Answer:
2.62 atm
Explanation:
1 atm = 14.6959 psi
38.5 / 14.6959 = 2.62 atm
Answer:
1.Very good electrical conductivity :<u> Metals</u> (Decreacing order of conductivity)
- <em>Silver > Copper > Gold > aluminium</em>
2. Amphoteric <u>: Metal elements</u>
- <em>Beryllium , Aluminium , Zinc </em>,
3.Gaseous at room temperature: mostly <u>Nobel gases elements</u> and some non - metal elements.
- <em>Helium ,neon , argon , krypton , fluorine , Oxygen , nitrogen</em>
4.Solid at room temperature:<u> Mostly Metals</u> (few non-metals, metalloid elements)
- <em>Metals (Sodium , potassium , calcium , gold are solid)</em>
<em>Non- metals(Carbon ,Boron )</em>
<em>Metalloids(antimony)</em>
<em>5.</em> Brittle <em>: </em><u>non - metals </u>(can't be rolled into wires)
<em>Hydrogen , carbon , sulfur , phosphorus</em><u> </u>
Explanation:
Answer:
no, the sollution will boil at a higher temperature because the density of the sollution will increase when salt is added to it
Answer:- 171 g
Solution:- It asks to calculate the grams of sucrose required to make 1 L of 0.5 Molar solution of it.
We know that molarity is moles of solute per liter of solution.
If molarity and volume is given then, moles of solute is molarity times volume in liters.
moles of solute = molarity* liters of solution
moles of solute = 0.5*1 = 0.5 moles
To convert the moles to grams we multiply the moles by molar mass.
Molar mass of sucrose = 12(12) + 22(1) + 11(16)
= 144 + 22 + 176
= 342 grams per mol
grams of sucrose required = moles * molar mass
grams of sucrose required = 0.5*342 = 171 g
So, 171 g of sucrose are required to make 1 L of 0.5 molar solution.