The optimum pH of formic acid - formate buffer is 3.75
<h3>What is pH? </h3>
- pH is a measure of how acidic/basic water is. The range goes from 0 - 14, with 7 being neutral. pHs of less than 7 indicate acidity, whereas a pH of greater than 7 indicates a base.
- pH is really a measure of the relative amount of free hydrogen and hydroxyl ions in the water.
What is Buffer ?
A substance or a solution which resists any changes in pH, when acid or alkali is added to it.
pH = pKa + log[base] / [acid]
Considering equimolar concentration of acid and base
pH = 3.75 + log(x)/(x)
pH = 3.75 + log (1)
pH = 3.75 + 0
pH = 3.75
Hence,
The optimum pH of formic acid - formate buffer is 3.75
Learn more about pH here:brainly.com/question/16036689
#SPJ4
The given question is incomplete. The complete question is :
Gaseous butane reacts with gaseous oxygen gas to produce gaseous carbon dioxide and gaseous water . If 1.31g of water is produced from the reaction of 4.65g of butane and 10.8g of oxygen gas, calculate the percent yield of water. Be sure your answer has the correct number of significant digits in it.
Answer: 28.0 %
Explanation:
To calculate the moles :


According to stoichiometry :
13 moles of
require 2 moles of butane
Thus 0.34 moles of
will require=
of butane
Thus
is the limiting reagent as it limits the formation of product and butane is the excess reagent.
As 13 moles of
give = 10 moles of 
Thus 0.34 moles of
give =
of 
Mass of 


The percent yield of water is 28.0 %
Explanation:
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
Alpha decay represents the forceful ejection of two protons and two neutrons from the nucleus of the parent atom. If 214 Po undergoes alpha decay, the equation would be:
214 Po ➡️ 210 Pb + 4 He + energy
Alpha decay is in the form of a helium nucleus, two protons and two neutrons.
Answer:
The freezing point of the solution is -1.4°C
Explanation:
Freezing point decreases by the addition of a solute to the original solvent, <em>freezing point depression formula is:</em>
ΔT = kf×m×i
<em>Where Kf is freezing point depression constant of the solvent (1.86°C/m), m is molality of the solution (Moles CaBr₂ -solute- / kg water -solvent) and i is Van't Hoff factor.</em>
Molality of the solution is:
-moles CaBr₂ (Molar mass:
189.9g ₓ (1mol / 199.89g) = 0.95 moles
Molality is:
0.95 moles CaBr₂ / 3.75kg water = <em>0.253m</em>
Van't hoff factor represents how many moles of solute are produced after the dissolution of 1 mole of solid solute, for CaBr₂:
CaBr₂(s) → Ca²⁺ + 2Br⁻
3 moles of ions are formed from 1 mole of solid solute, Van't Hoff factor is 3.
Replacing:
ΔT = kf×m×i
ΔT = 1.86°C/m×0.253m×3
ΔT = 1.4°C
The freezing point of water decreases in 1.4°C. As freezing point of water is 0°C,
<h3>The freezing point of the solution is -1.4°C</h3>
<em />