Okay!
8.50molH, represents 8.50 moles of Hydrogen gas!
To convert from moles to volume multiply it by the ratio of L/molH
mol of anything in a conversion problem is always 1 unless you are going to an unknown! Try to memorize this, but the number you always put in for the # of liters in a conversion problem is 22.4L (L is a measure of volume)
8.50molH * (22.4 L/ 1 molH)
190.L of Hydrogen Gas.
Hope that helped!
+
⇔
Decreasing the temperature of the reaction,the reaction shifts forward.
The explanation is given below.
Explanation:
If the temperature of the reaction mixture is increased,then the equilibrium will shift to decrease the temperature.
If the temperature of the reaction mixture is decreased,then the equilibrium will shift to increase the temperature.
During the formation of the ammonia,it gives off heat.So it is an exothermic reaction.
+
⇔
A decrease in the temperature favors the reaction that is exothermic (the forward reaction)because it produces energy.Therefore,if the temperature is decreased,the yield of the ammonia increases.
<em>Therefore if the temperature is increased,the reaction shifts forward and the yield of the ammonia increases and it is an exothermic reaction.</em>
Answer: Option (a) is the correct answer.
Explanation:
Ionic salts are defined as the salts which tend to contain ionic bonds as there occurs transfer of electrons between its combining atoms.
So, when an ionic salt melts or it is dissolved in water then it will dissociate into its respective ions and as electricity is the flow of electrons or ions. Hence, this salt is then able to conduct electricity.
As covalent compounds are insoluble in water so, they do no dissociate into ions. Hence, they do not conduct electricity.
Similarly, metallic and network solids do not dissociate into ions either when melted or dissolved in water. Therefore, they also do not conduct electricity.
Thus, we can conclude that when a white crystalline salt conducts electricity when it is melted and when it dissolves in water then this bond is of ionic type.
The region is located on an active oceanic plate