Answer:
Explanation:
mass m = 3 kg
spring constant be k
k x .8 = 40 N
k = 40 / .8 = 50 N /m
angular frequency ω = √ ( k / m )
= √ ( 50 / 3 )
= 4.08 rad /s
Let amplitude of oscillation be A .
1/2 k A² = 1/2 m v²
50 A² = 3 x 1²
A = .245 m = 24.5 cm
For displacement , the equation of SHM is
x = A sinωt
= 24.5 sin4.08 t
x = 24.5 sin4.08 t
Here, angle 4.08 t is in radians .
Half mass car because it's traveling faster
(Mass does not affect the pendulum's swing. The longer the length of string, the farther the pendulum falls; and therefore, the longer the period, or back and forth swing of the pendulum. The greater the amplitude, or angle, the farther the pendulum falls; and therefore, the longer the period.)
Answer:
I'm not really sure but I think it's choice a
I already answered this quesiton. The fact is that there are only two kind of poles and since the two taped poles of the magnets labeled A and B attracts one to each other, we know that the two taped poles of the first two magnets are oppsosite.
Then, the taped pole of the third magnet has to be equal to one of the first two taped poles and opposite to the other of the first two taped poles.
That drives you to conclude (predict) that when she brings the taped end of the third magnet (magnet C) near each of the first two magntes, in one case they will attract each other and in the other case they will repele mutually.