<span>65W * 8h * 3600s/h = 1.9e6 J = 447 Cal </span>
Answer:
A.) 1430 metres
B.) 80 seconds
Explanation:
Given that the train accelerates from rest at 1.1m/s^2 for 20s. The initial velocity U will be:
U = acceleration × time
U = 1.1 × 20 = 22 m/s
It then proceeds at constant speed for 1100 m
Then, time t will be
Time = distance/ velocity
Time = 1100/22
Time = 50 s
before slowing down at 2.2m/s^2 until it stops at the station.
Deceleration = velocity/time
2.2 = 22/t
t = 22/2.2
t = 10s
Using area under the graph, the distance between the two stations will be :
(1/2 × 22 × 20) + 1100 + (1/2 × 22 × 10)
220 + 1100 + 110
1430 m
The time taken between the two stations will be
20 + 50 + 10 = 80 seconds
Answer:
Revolutions made before attaining angular velocity of 30 rad/s:
θ = 3.92 revolutions
Explanation:
Given that:
L(final) = 10.7 kgm²/s
L(initial) = 0
time = 8s
<h3>
Find Torque:</h3>
Torque is the rate of change of angular momentum:

<h3>Find Angular Acceleration:</h3>
We know that
T = Iα
α = T/I
where I = moment of inertia = 2.2kgm²
α = 1.34/2.2
α = 0.61 rad/s²
<h3>
Find Time 't'</h3>
We know that angular equation of motion is:
ω²(final) = ω²(initial) +2αθ
(30 rad/s)² = 0 + 2(0.61 rad/s²)θ
θ = (30 rad/s)²/ 2(0.61 rad/s²)
θ = 24.6 radians
Convert it into revolutions:
θ = 24.6/ 2π
θ = 3.92 revolutions
Answer: 482.8032 km per hr
Explanation: 300 * 1.609344 =
Answer:
120000 kgxm/s
Explanation:
momentum is mass times velocity so just multiply 1600 kg times 75 m/s and you get 120000 kgxm/s