<u>Answer:</u>
The correct answer option is momentum.
<u>Explanation:</u>
Momentum is the product of an object's mass and velocity.
It is a term which describes the relationship between the mass of an object and the velocity of an object.
Momentum can be represented in the form of an equation as:
P = mv
where P is the momentum,
m is the mass of the object; and v is the velocity of that object.
Answer:
0.208 N
Explanation:
We are given that


Distance,d=0.41 m
The magnitude of the net electrostatic force experienced by any charge at point 4
Net force,






Where 


The difference between the above velocities is that they exist in opposite direction of each other. or it can be said that they are negative vectors of each other.
Answer:
Explanation:
Given
mass of boy 
mass of girl 
speed of girl after push 
Suppose speed of boy after push is 
initially momentum of system is zero so final momentum is also zero because momentum is conserved




i.e. velocity of boy is 2.82 m/s towards west