Answer:
31.1 N
Explanation:
m = mass attached to string = 0.50 kg
r = radius of the vertical circle = 2.0 m
v = speed of the mass at the highest point = 12 m/s
T = force of the string on the mass attached.
At the highest point, force equation is given as

Inserting the values

T = 31.1 N
Answer:
P=740 KPa
Δ=7.4 mm
Explanation:
Given that
Diameter of plunger,d=30 mm
Diameter of sleeve ,D=32 mm
Length .L=50 mm
E= 5 MPa
n=0.45
As we know that
Lateral strain



We know that




So the axial pressure


P=740 KPa
The movement in the sleeve


Δ=7.4 mm
A 59 kg sprinter, starting from rest, runs 47 m in 7.0 s at constant acceleration.?
What is the sprinter's power output at 2.0 s, 4.0 s, and 6.0 s?
Instantaneous Power is the force times velocity
P = Fv
Because the acceleration is constant, the force will be constant as well
F = ma
P = mav
for constant acceleration, the velocity at each time is found using
v = at
P = ma(at) = ma²t
find the acceleration using kinematic equation
s = ½at²
a = 2s/t²
a = 2(47) / 7.0²
a = 1.918 m/s²
P(2.0) = 59(1.918²)2.0 = 434.25 W = 0.43 kW
P(4.0) = 59(1.918²)4.0 = 868.51 W = 0.87 kW
P(6.0) = 59(1.918²)6.0 = 1302.76 W = 1.3 kW
I hope this helped.
When the car comes to a stop, the final velocity must be 0 m/s.
Since the car js decelerating in a forward direction, acceleration must be negative.
final v = initial v + a•t
0 = 20 + (-6)t
t = 3.33s