Answer:
Given:
mb=2.05 kgmb=2.05 kg Mass of the book
fs=2.45 Nfs=2.45 N Static friction
fk=1.50 Nfk=1.50 N Kinetic friction
Answer:
t = 17199 years
Explanation:
given,
mass of sample = 1.09 Kg
Activity of living material = 15 decays / min /g
Activity of living material = 15 x 1000 decays /min /kg
Activity of living material per 1.09 kg A = 1.09 x 15 x 1000 decays / min
Activity of after time t is A ' = 2020
half life = 57300 years
desegregation constant
λ = 0.693 / 5700




taking ln both side

t = 17199 years
Answer:
None, both objects will hit ground at the same time.
Explanation:
- Assuming no air resistance present, and that both objects start from rest, we can apply the following kinematic equation for the vertical displacement:

- As the left side in (1) is the same for both objects, the right side will be the same also.
- Since g is constant close to the surface of the Earth, it's also the same for both objects.
- So, the time t must be the same for both objects also.
Answer:
The overall velocity of the water when it hits the bottom is:

Explanation:
Use the law of conservation of energy.
Call it instant [1] to the moment when the water is just before reaching the falls.
At this moment its height h is 206 meters and its velocity horizontally
is
m/s.
At the instant [1] the water has gravitational power energy 

The water also has kinetic energy Ek.

Then the Total E1 energy is:

In the instant [2] the water is within an instant of touching the ground. At this point it only has kinetic energy, since the height h = 0. However at time [2] the water has maximum final velocity 
So:

As the energy is conserved then 

Now we solve for
.

About <span>250,000 DWT(Dead Weight Tons)</span>