You give the ball to the other team
Answer: B. Concrete
Explanation:
Let N = reacting force pressing the bodies in context together (units in Newtons),
The question stated that the force pressing the two mounted/stacked objects together is equal to the weight of the object on top.
We need to start by finding the weight of the piece of wood.
friction is given by
f = μN
The value of f is 22.5,
and from the chart reference the coefficient of friction between wood and stone, μ is 0.30.
22.5 = 75. 0.30
Putting the values into the equation: 22.5 = 0.30N.
Divide both sides by 0.30 to find the value of N:
N= 22.5/0.3 = 75
Now that the piece of wood will be placed on another surface, its weight of 75 Newton is the force pressing the two bodies together.
To determine the new surface, you should find the new coefficient of friction by using the new value of the force of friction given 46.5:
46.5 = µ(75).
Divide both sides by 75 to isolate μ.
The refer chart also indicates that the coefficient of friction equals 0.62 between wood and concrete, so the new surface corresponding to 0.62 is the concrete, which is (B).
I'm not really sure what specific answer they're looking for, but if it's an open-ended question, then let's think about it this way...
A light year, is the distance it takes for light to travel in a year. If an object is 50,000 light years away, then by the time the light travels to us, 50,000 years has passed. We are looking at a 50,000 year old image of that object. (ignoring gravity and spatial expansion fun stuffs)
<span>The answer is 62 u. The molecular mass of a molecule (Mr) is the sum of atomic masses (Ar) of its elements. Ar(Na) = 23 u. Ar(O) = 16 u. Therefore, the molecular mass of sodium oxide is 62 u: Mr(Na2O) = 2 * Ar(Na) + Ar(O) = 2 * 23 u + 16 u = 46 + 16 = 62 u.</span>