<span>A chemist adds 155.0ml of a 4.10 X 10^-5 mmol/L of a zinc oxalate (ZnC2O4)solution to a reaction flask. Calculate the mass in micrograms of zinc oxalate the chemist has added to the flask.
1mmol = 10^-3 mol
Therefore 4.10*10^-5mmol = 4.10*10^-8mol
molar mass ZnC2O4 = 65.39+(2*12.011)+(4*15.99) = 153.372g/mol
You have 4.10*10^-8 mol/litre =153.372 * 4.10*10^-8 = 6.29*10^-6 grams / litre (* see below)
But you have 155ml. Mass of ZnC2O4 = 155/1000*6.29*10^-6 g
Mass is = 9.75*10^-7 grams
1µg = 10^-6 g
You then have 9.75*10^-7/10^-6 = 0.975µg ZnC2O4
(*see below) at this point you could have said:
1µg = 10^-6 g therefore you have a solution of 6.29µg per litre,
155ml = 6.29*155/1000 = 0.975µg ZnC2O4</span>
C6H15O6
Good luck and don't forget to rate or mark Brainliest :)
Answer:
Nucleic acid is an important class of macromolecules found in all cells and viruses. Deoxyribonucleic acid (DNA) encodes the information the cell needs to make proteins.
A related type of nucleic acid, called ribonucleic acid (RNA), comes in different molecular forms that participate in protein synthesis.
<span>0.06355391 mol
The balanced equation for the reaction is
Na2B4O7*10H2O + 2 HNO3 = 2 NaNO3 + 4 H3BO3 + 5 H2O
So for each mole of Borax to neutralize, it takes 2 moles of HNO3.
Calculate number of moles of Borax
0.2619 g / 381.372 g/mol = 0.0006867 mol
Moles of HNO3 used = 0.0006867 mol * 2 = 0.0013734 mol
Molarity is defined as moles per liter so divide the number of moles used by the volume in liters. So
0.0013734 / 0.02161 = 0.06355391 mol</span>
Answer:
1. A long crack in the oceanic crust forms at a mid ocean ridge
Explanation: