To calculate the specific heat capacity of an object or substance, we can use the formula
c = E / m△T
Where
c as the specific heat capacity,
E as the energy applied (assume no heat loss to surroundings),
m as mass and
△T as the energy change.
Now just substitute the numbers given into the equation.
c = 2000 / 2 x 5
c = 2000/ 10
c = 200
Therefore we can conclude that the specific heat capacity of the block is 200 Jkg^-1°C^-1
To solve this problem we need to apply the corresponding sound intensity measured from the logarithmic scale. Since in the range of intensities that the human ear can detect without pain there are large differences in the number of figures used on a linear scale, it is usual to use a logarithmic scale. The unit most used in the logarithmic scale is the decibel yes described as

Where,
I = Acoustic intensity in linear scale
= Hearing threshold
The value in decibels is 17dB, then

Using properties of logarithms we have,




Therefore the factor that the intensity of the sound was 
Answer:
The answer cannot be determined.
Explanation:
The energy of the diver when he hits the pool will be equal to its potential energy
, and for the temperature of the pool to rise up, this energy has to be converted into the heat energy of the pool.
The change in temperature
then will be

Where m is the mass of water in the pool, c is the specific heat capacity of water, and
is the added heat which in this case is the energy of the diver.
Since we do not know the mass of the water in the pool, we cannot make this calculation.
KE = 1/2mv^2
1/2(10.5)(9)^2
1/2(10.5)(81) = 425.25 J
Just tryna get points points points points points points