Answer: Option (c) is the correct answer.
Explanation:
When an acid or base is added to a solution then any resistance by the solution in changing the pH of the solution is known as a buffer.
This is because a buffer has the ability to not get affected by the addition of small amounts of an acid or a base. As a result, it helps in maintaining the pH of the solution.
In the give case, when we add the HCl then more number of protons will dissociate. This causes the acetate to react with the protons and leads to the formation of acetic acid.
We know that acetic acid is a weak acid and it dissociates partially or feebly. Therefore, no change in pH will take place.
Thus, we can conclude that equation represents the chemical reaction that accounts for the fact that acid was added but there was no detectable change in pH.
O,P,Ge ranked from atomic radius
•3.9g of ammonia
•molar mass of ammonia = 17.03g/mol
1st you have to covert grams to moles by dividing the mass of ammonia with the molar mass:
(3.9 g)/ (17.03g/mol) = 0.22900763mols
Then convert the moles to molecules by multiplying it with Avogadro’s number:
Avogadro’s number: 6.022 x 10^23
0.22900763mols x (6.022 x 10^23 molecs/mol)
= 1.38 x 10^23 molecules
Explanation:
1.
Cu(NO3)2 + 2NaCl(aq) --> CuCl2(aq) + 2NaNO3(aq)
2.
Cu(NO3)2 + 2NaOH(aq) --> Cu(OH)2(s) + 2NaNO3(aq)
A light blue precipitate of Cu(OH)2 is formed and NaNO3 in solution.
3.
Cu(NO3)2(aq) --> Cu2+(aq) + 2NO3^-2(aq)
2NaOH(aq) --> 2Na+(aq) + 2OH-(aq)
Cu2+(aq) + 2OH-(aq) --> Cu(OH)2(aq)
2Na+(aq) + 2NO3^-2(aq) --> 2NaNO3(aq)
4.
The reaction in both Questions 1 and 2 is called Double displacement reaction. A double-replacement reaction exchanges the cations and/or or the anions of two ionic compounds. A precipitation reaction is a double-replacement reaction in which one product is a solid precipitate (precipitated) while the other in solution.
Since the cation and anions in Qustion 1 were exchanged, the same was done for Question 2, hence the identity of the precipitate in Question 2 was got.
A solution (in this experiment solution of NaNO₃) freezes at a lower temperature than does the pure solvent (deionized water). The higher the
solute concentration (sodium nitrate), freezing point depression of the solution will be greater.
Equation describing the change in freezing point:
ΔT = Kf · b · i.
ΔT - temperature change from pure solvent to solution.
Kf - the molal freezing point depression constant.
b - molality (moles of solute per kilogram of solvent).
i - Van’t Hoff Factor.
First measure freezing point of pure solvent (deionized water). Than make solutions of NaNO₃ with different molality and measure separately their freezing points. Use equation to calculate Kf.