Answer:
This difference is kept to a minimum because the resistance in transformers is a few tens of ohms and the resistance of modern voltmeters is of the order of MΩ.
Explanation:
A voltmeter is built by a galvanometer and a resistance in series, this set is connected in parallel to the resistance where the voltage is to be measured, therefore the voltage is divided between the voltmeter and the element to be measured, consequently the measured voltage It is less than the calculated one, since for them the resistance of the voltmeter is assumed infinite.
This difference is kept to a minimum because the resistance in transformers is a few tens of ohms and the resistance of modern voltmeters is of the order of MΩ.
Specific Gravity of the fluid = 1.25
Height h = 28 in
Atmospheric Pressure = 12.7 psia
Density of water = 62.4 lbm/ft^3 at 32F
Density of the Fluid = Specific Gravity of the fluid x Density of water = 1.25 x 62.4
Density of the Fluid p = 78 lbm/ft^3
Difference in pressure as we got the differential height, dP = p x g x h dP = (78 lbm/ft^3) x (32.174 ft/s^2) x (28/12 ft) [ 1 lbf / 32.174 ft/s^2] [1 ft^2 /
144in^2]
Difference in pressure = 1.26 psia
(a) Pressure in the arm that is at Higher
P = Atmospheric Pressure - Pressure difference = 12.7 - 1.26 = 11.44 psia
(b) Pressure in the tank that is at Lower
P = Atmospheric Pressure + Pressure difference = 12.7 + 1.26 = 13.96psia
<span>The answer is letter D.
The most important step in formulation a scientific inquiry is to first formulate a question. All answers sprung from a question that scratched the mind. Experimentation is not possible without the need to question, with this, the drive to find the answers is what motivates scientists or people involved in an experiment to find the answers that would suffice their curiosity. Questions are the basis of all the other choices above and is the most crucial step in the scientific inquiry.<span>
</span></span>
Answer:
V (initial vertical velocity) = 45.4 sin 31.2 = 23.52 m/s
1/2 m V^2 = m g h conservation of energy
h = V^2 / (2 g) = 23.52^2 / 19.6 = 28.2 m max height
Check:
t = 28.2 / 9.8 = 2.88 sec time to reach max height
h = 23.52 * 2.88 - 1/2 g 2.88^2 = 27.1 m