<u>Answer:</u> The given amount of iron reacts with 9.0 moles of
and produce 6.0 moles of 
<u>Explanation:</u>
We are given:
Moles of iron = 12.0 moles
The chemical equation for the rusting of iron follows:

By Stoichiometry of the reaction:
4 moles of iron reacts with 3 moles of oxygen gas
So, 12.0 moles of iron will react with =
of oxygen gas
- <u>For iron (III) oxide:</u>
By Stoichiometry of the reaction:
4 moles of iron produces 2 moles of iron (III) oxide
So, 12.0 moles of iron will produce =
of iron (III) oxide
Hence, the given amount of iron reacts with 9.0 moles of
and produce 6.0 moles of 
b) It is based on atomic properties as alkali metals requires 7 more electrons to complete their outer orbit. And they try to give those electrons to other elements to obtain noble gas configuration.
Noble gases are the gases which do not react easily with anything. They are also called as Inert gases, and belongs to group 18 of the periodic table.
Alkali metals are the substances which are found in Group I of a periodic table. Mostly the elements which are present are:
Properties of alkali metals are: Soft, shiny reactive metals. They are soft enough to cut with knife. Metals react with water and air quickly and gets tarnish, so pure metals are stored in container by dipping them in oil to prevent oxidation.
To know more about Alkali metals, refer to this link:
brainly.com/question/18153051
#SPJ4
You always adjust numbers and it will be before the element
so you Neva add or change a subscript
Answer:
Explanation:
In the qualitative analysis of metal salts , we see that in group I , metal chlorides are precipitated out . It is so because their metal chlorides are insoluble in water .
In this group following metal ions are present
Ag+,
Hg₂²⁺
Pb²⁺