B aaaaaaaaaaassaaaaaaaaaaaaaaaaaaaaaaaaaaaaAaaaaaaaaaaaa
Answer:
A. 266g/mol
Explanation:
A colligative property of matter is freezing point depression. The formula is:
ΔT = i×Kf×m <em>(1)</em>
Where:
ΔT is change in temperature (0°C - -0,14°C = 0,14°C)i is Van't Hoff factor (1 for a nonelectrolyte dissolved in water), kf is freezing point molar constant of solvent (1,86°Cm⁻¹) and m is molality of the solution (moles of solute per kg of solution). The mass of the solution is 816,0g
Replacing in (1):
0,14°C = 1×1,86°Cm⁻¹× mol Solute / 0,816kg
<em>0,0614 = mol of solute</em>.
As molar mass is defined as grams per mole of substance and the compound weights 16,0g:
16,0g / 0,0614 mol = 261 g/mol ≈ <em>A. 266g/mol</em>
I hope it helps!
Not sustainable; not to be supported, maintained, upheld, or corroborated.
Answer:
-3135.47 kJ/mol
Explanation:
Step 1: Write the balanced equation
C₆H₆(l) + 7.5 O₂(g) ⇒ 6 CO₂(g) + 3 H₂O(g)
Step 2: Calculate the standard enthalpy change of the reaction (ΔH°r)
We will use the following expression.
ΔH°r = ∑np × ΔH°f(p) - ∑nr × ΔH°f(r)
where,
n: moles
ΔH°f: standard enthalpies of formation
p: products
r: reactants
ΔH°r = 6 mol × ΔH°f(CO₂(g)) + 3 mol × ΔH°f(H₂O(g)) - 1 mol × ΔH°f(C₆H₆(l)) - 7.5 mol × ΔH°f(O₂(g))
ΔH°r = 6 mol × (-393.51 kJ/mol) + 3 mol × (-241.82 kJ/mol) - 1 mol × (48.95 kJ/mol) - 7.5 mol × 0 kJ/mol
ΔH°r = -3135.47 kJ
Since this enthalpy change is for 1 mole of C₆H₆(l), we can express it as -3135.47 kJ/mol.
Answer:
I am using an example for this in this table it works for any other compound as well.