1) Balanced chemical equation:
2SO2 (g) + O2 (g) -> 2SO3 (l)
2) Molar ratios
2 mol SO2 : 1 mol O2 : 2 mol SO3
3) Convert 6.00 g O2 to moles
number of moles = mass in grams / molar mass
number of moles = 6.00 g / 32 g/mol = 0.1875 mol O2.
4) Use proportions with the molar ratios
=> 2 moles SO2 / 1 mol O2 = x / 0.1875 mol O2
=> x = 0.1875 mol O2 * 2 mol SO2 / 1 mol O2 = 0.375 mol SO2.
5) Convert 0.375 mol SO2 to grams
mass in grams = number of moles * molar mass
molar mass SO2 = 32 g/mol + 2*16 g/mol = 64 g/mol
=> mass SO2 = 0.375 mol * 64 g / mol = 24.0 g
Answer: 24.0 g of SO2 are needed to react completely with 6.00 g O2.
The subatomic particle involved in chemical bonding is the electron. Electrons are the smallest of all subatomic particles and orbit the nucleus in discrete energy levels called shells. Electrons are negatively charged and the nucleus is positively charged due to the protons.
The main points of Dalton's atomic theory, as it eventually developed, are: Elements are made of extremely small particles called atoms. Atoms of a given element are identical in size, mass and other properties; atoms of different elements differ in size, mass and other properties.
Answer:
513.74 g of solution
Explanation:
% Mass grams are defined as the <em>grams that are dissolved in salt</em> (in this case, it would be <em>potassium nitrate</em>) <em>dissolved every 100 g of the solution</em>. Having this information, you can calculate the amount of solution that has dissolved 18.7 g of potassium nitrate, which is what we want to obtain.
The relationship is:
3.64 g of potassium nitrate _____ 100 g solution
18.7 g of potassium nitrate _____ X = 513.74 g of solution
Calculation: 18.7g x 100g / 3.64g = 513.74 g of solution
So, <em>I need 513.74 g of solution to get 18.7g of potassium nitrate by evaporating it</em>.