Answer:
2081.65 m
Explanation:
We'll begin by calculating the time taken for the load to get to the target. This can be obtained as follow:
Height (h) = 3000 m
Acceleration due to gravity (g) = 10 m/s²
Time (t) =?
h = ½gt²
3000 = ½ × 10 × t²
3000 = 5 × t²
Divide both side by 5
t² = 3000 / 5
t² = 600
Take the square root of both side
t = √600
t = 24.49 s
Finally, we shall determine the distance from the target at which the load should be released. This can be obtained as follow:
Horizontal velocity (u) = 85 m/s
Time (t) = 24.49 s
Horizontal distance (s) =?
s = ut
s = 85 × 24.49
s = 2081.65 m
Thus, the load should be released from 2081.65 m.
If you try to fit the edges of both continents than they should somewhat fit each other like puzzle pieces
Complete Question
The complete question is shown on the first uploaded image
Answer:
The total pressure is 
The temperature at the bottom is 
Explanation:
From the question we are told that
The length of the glass tube is 
The length of water rise at the bottom of the lake 
The depth of the lake is 
The air temperature is 
The atmospheric pressure is 
The density of water is 
The total pressure at the bottom of the lake is mathematically represented as

substituting values


According to ideal gas law
At the surface the glass tube not covered by water at surface

Where is the volume of

At the bottom of the lake

Where
is the volume of the glass tube not covered by water at bottom
and
i the temperature at the bottom
So the ratio between the temperature at the surface to the temperature at the bottom is mathematically represented as

substituting values

=> 
Answer:
The correct answer is option 'a' 'The momentum is always conserved while as the kinetic energy may be conserved'
Explanation:
The conservation of momentum is a basic principle in nature which is always valid in an collision between 'n' number of objects if there are no external forces on the system. It is valid for both the cases weather the collision is head on or glancing or weather the object is elastic or inelastic.
The energy is only conserved in a collision that occurs on a friction less surface and the objects are purely elastic. Since in the given question it is mentioned that only the surface is friction less and no information is provided regarding the nature of the objects weather they are elastic or not hence we cannot conclusively come to any conclusion regarding the conservation of kinetic energy as the objects may be inelastic.