If the ice absorbed 350,000 joules in 5 minutes, then it absorbed energy
at the rate of
(350,000 joules) / (5 x 60 seconds) =<em> 1,166-2/3 watts</em> .
Surely the ice cube didn't absorb every joule delivered to the cooking chamber,
so the microwave oven's cooking power had to be significantly more than that.
let the length of the beam be "L"
from the diagram
AD = length of beam = L
AC = CD = AD/2 = L/2
BC = AC - AB = (L/2) - 1.10
BD = AD - AB = L - 1.10
m = mass of beam = 20 kg
m₁ = mass of child on left end = 30 kg
m₂ = mass of child on right end = 40 kg
using equilibrium of torque about B
(m₁ g) (AB) = (mg) (BC) + (m₂ g) (BD)
30 (1.10) = (20) ((L/2) - 1.10) + (40) (L - 1.10)
L = 1.98 m
To solve this problem it is necessary to apply the concepts related to Dopler's Law. Dopler describes the change in frequency of a wave in relation to that of an observer who is in motion relative to the Source of the Wave.
It can be described as

c = Propagation speed of waves in the medium
= Speed of the receiver relative to the medium
= Speed of the source relative to the medium
Frequency emited by the source
The sign depends on whether the receiver or the source approach or move away from each other.
Our values are given by,
Velocity of car
velocity of motor
Velocity of sound
Frequency emited by the source
Replacing we have that



Therefore the frequency that hear the motorcyclist is 601.7Hz
<span>The number of the group identifies the column of the standard periodic table in which the element appears.</span>
Group 1 contains the alkali metals ( lithium<span> (</span>Li<span>), </span>sodium<span> (</span>Na<span>), </span>potassium<span> (</span>K<span>), </span>rubidium<span> (</span>Rb<span>), </span>caesium<span> (</span>Cs<span>), and </span>francium(Fr).)<span>
Group 2 contains the alkaline earth metals (</span> beryllium<span> (</span>Be),magnesium<span> (</span>Mg<span>), </span>calcium<span> (</span>Ca<span>), </span>strontium<span> (</span>Sr<span>), </span>barium<span> (</span>Ba<span>) and </span>radium<span> (</span>Ra<span>) )
Group 3: </span><span> Scandium (Sc) and yttrium (Y) </span>