Answer:
1.3 L
Explanation:
The volume of a rectangular cube can be calculated using the following formula:
Volume (L) = length (cm) x width (cm) x height (cm)
Keep in mind that 1 L = 1,000 cm³.
Before you can plug the values into the equation, you need to make sure they all have the same unit. Since the length is in meters (m), you need to first convert it to centimeters.
1 meter = 100 cm
0.159 m 100 cm
--------------- x ---------------- = 15.9 cm
1 m
Now, you can solve for the volume. To find the answer is the unit liters, you need to divide the volume by 1,000.
Volume = l x w x h
Volume = 15.9 cm x 10.5 cm x 7.7 cm
Volume = 1,285.5 cm³
Volume = 1.2855 L ------> Volume = 1.3 L
Among the choices given, the correct answer is the first option. Substance X most likely is a crystal, and substance Y most likely is a liquid. Substance X having a fixed volume describes a crystal because crystals occupy a certain volume. Substance Y is a liquid because liquids can still be compressed further in order to attain a more packed <span>structure.</span>
Answer:
-411 kj
Explanation:
We solve by using this formula
∆U = ∆Q + ∆W
This formula is the first law of thermodynamics
Change in internal energy U = +241
Heat gained by system Q = 652
Putting the value into the equation
+241 = 652 + W
Workdone = 241 - 652
Workdone = -411 kj
Since work done is negative it means that work was done by the system
Answer:
The answer is Lyase
Explanation:
Any enzyme that catalyzes the addition or removal of the elements water (hydrogen, oxygen), ammonia (nitrogen, hydrogen), or carbon dioxide (carbon, oxygen) at double bonds, as defined in physiology. Decarboxylases, for example, remove carbon dioxide from amino acids, while dehydrases eliminate water.
Answer:
The standard enthalpy of formation of this isomer of octane is -220.1 kJ/mol
Explanation:
Step 1: Data given
The combustion reaction of octane produces 5104.1 kJ per mol octane
Step 2: The balanced equation
C8H18(g) + 12.5 O2 ⟶ 8CO2 (g) + 9 H2O (g) ∆H°rxn = -5104.1 kJ/mol
Step 3:
∆H°rxn = ∆H°f of products minus the ∆H° of reactants
∆H°rxn = ∆H°f products - [∆H°f reactants]
-5104.1 kJ/mol = (8*∆H°fCO2 + 9*∆H°fH20) - (∆H°fC8H18 + 12.5∆H°fO2)
∆H°f C8H18 = ∆H°f 8CO2 + ∆H°f 9H2O+ 5104.1 kJ/mol
∆H°f C8H18 = 8 * (-393.5 kJ)/mol + 9 * (-241.8 kJ/mol)] + 5104.1 kJ
/mol
∆H°f C8H18 = -220.1 kJ/mol
The standard enthalpy of formation of this isomer of octane is -220.1 kJ/mol