Answer:
Explanation:
If Ek is the kinetic energy and m is the mass and v is the velocity then v can be calculated as follows
Ek= 1/2 ×( m × v² )
2Ek= mv²
2Ek/m = v²
v =√(2Ek/m)
m = 0.1 kg
v= √(2x8/0.1)= 12.65 m/s
Answer:
Bone
Explanation:
Diagnostic radiology include the use of non-invasive imaging scans to diagnose a patient.
The voltages used in diagnostic tubes range from roughly 20 kV to 150 kV and thus the highest energies of the X-ray photons range from roughly 20 keV to 150 keV.
The tests and equipment used sometimes involves low doses of radiation to create highly detailed images of an area.
Answer:
W = 2352 J
Explanation:
Given that:
- mass of the bucket, M = 10 kg
- velocity of pulling the bucket, v = 3

- height of the platform, h = 30 m
- rate of loss of water-mass, m =

Here, according to the given situation the bucket moves at the rate,

The mass varies with the time as,

Consider the time interval between t and t + ∆t. During this time the bucket moves a distance
∆x = 3∆t meters
So, during this interval change in work done,
∆W = m.g∆x
<u>For work calculation:</u>
![W=\int_{0}^{10} [(10-0.4t).g\times 3] dt](https://tex.z-dn.net/?f=W%3D%5Cint_%7B0%7D%5E%7B10%7D%20%5B%2810-0.4t%29.g%5Ctimes%203%5D%20dt)
![W= 3\times 9.8\times [10t-\frac{0.4t^{2}}{2}]^{10}_{0}](https://tex.z-dn.net/?f=W%3D%203%5Ctimes%209.8%5Ctimes%20%5B10t-%5Cfrac%7B0.4t%5E%7B2%7D%7D%7B2%7D%5D%5E%7B10%7D_%7B0%7D)
