1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
allsm [11]
3 years ago
5

Lab reaction rate project for chemistry edge2020

Chemistry
2 answers:
guajiro [1.7K]3 years ago
6 0

Answer:

What Affects Reaction Rate?

The purpose of this lab was to see how temperature and particle size affects reaction rate. The first hypothesis is if you increase the temperature of a reaction, then the reaction rate will increase because particles experience more collisions at higher temperatures.The second hypothesis is if you decrease the particle size of a reactant, then the reaction rate will increase because more of the reactants’ molecules will contact each other. The independent variables are particle size and temperature. The dependent variable is reaction rate.

Materials

250 mL graduated cylinder

Thermometer

Water

Timer

Four 250 mL beakers

Seven 1,000 mg effervescent tablets

Two pieces of filter paper

600 mL beaker

Ice

Hot plate

Procedure

Step 1:Gather Materials

Variation of Temperature

Step 2:Measure the Reaction Rate at ≈ 20°C (Room Temperature)

a) Using a graduated cylinder, fill a 250 mL beaker with 200 mL of water.

b) Measure the temperature of the water and record it in the correct row of Table A.

c) Reset the timer. Start the timer as you place a full tablet into the beaker.

d) Record the reaction time on the Data Sheet in the correct row of Table A.

e) Compute the reaction rate to the nearest mg/L/sec. Record it in the last column of Table A. Measure the Reaction Rate at ≈ 40°C

Step 3:Repeat Step 2, heating the water to approximately 40°C using a hot plate during sub-step a. Measure the Reaction Rate at ≈ 65°C

Step 4:Repeat Step 2, heating the water to approximately 65°C using a hot plate during sub-step a. Measure the Reaction Rate at ≈ 5°C

Step 5:Repeat Step 2, chilling the water to approximately 5°C inside an ice bath during sub-step a. (To create an ice bath, place 100 mL of ice and 100 mL of water in a 600 mL beaker of ice water and wait until the temperature reaches approximately 5°C. To save time, you may wish to set up the ice bath, using an additional 250 mL beaker, while working on Step 4.)

Variation of Particle Size

Step 6:Measure the Reaction Rate for a Full Tablet

a) Using a graduated cylinder, fill a 250 mL beaker with 200 mL of water.

b) Reset the timer. Start the timer as you place the tablet in the beaker.

c) Record the reaction time on the Data Sheet in the appropriate row of Table B.

d) Compute the reaction rate to the nearest mg/L/sec. Record it in the last column of Table B.

Step 7:Measure the Reaction Rate for a Partially Broken Tablet

Repeat Step 6, but this time break the tablet into eight small pieces on a piece of filter paper. Make sure to place all of the pieces into the beaker at the same time.

Step 8:Measure the Reaction Rate for a Crushed Tablet

Repeat Step 6, but this time crush the tablet into tiny pieces on a piece of filter paper. Make sure to place all of the pieces into the beaker at the same time.

Step 9: Dispose of all samples according to your teacher’s directions.

Measured Reaction Temperature (°C)

Mass of Tablet (mg)

Volume of Water (L)

Reaction Time (s)

Reaction Rate (mg/L/s)

≈20°C

24

1,000

0.2

34.2

146.2

≈40°C

40

1,000

0.2

26.3

190.1

≈65°C

65

1,000

0.2

14.2

352.1

≈5°C

3

1,000

0.2

138.5

36.1

Relative Particle Size (Small, Medium, Large)

Mass of Tablet (mg)

Volume of Water (L)

Reaction Time (s)

Reaction Rate (mg/L/s)

Full Tablet

large

1,000

0.2

34.5

144.9

Broken Tablet

medium

1,000

0.2

28.9

173.0

Crushed Tablet

small

1,000

0.2

23.1

216.5

The data in the first table show that as the temperature increases the reaction time decreases and in turn the reaction rate increases. The data supported the hypothesis that as temperature increases reaction rate will also increase. The second table shows that as the particle size decreases the reaction time increases because there is more surface area when the particles are smaller. The data in the second table supported the second hypothesis that as particle size decreases the reaction rate will increase because there will be more contact in the molecules. Possible source of error would be an error in stopping the timer in time or chips in the tablets. To improve this lab it could be done with different types of reactions or different temperature or different particle sizes.

Explanation:

ra1l [238]3 years ago
3 0

Answer:

^^^^^^^^^^^^^^^^^^^^^^^ this guy above is so beautiful and deserves to marry me

Explanation:

i got 100% on it!!!!!!!!!!!

You might be interested in
An elimination reaction can best be described as a reaction in which an elimination reaction can best be described as a reaction
tresset_1 [31]
So I’m not 100% sure what you’re asking but I’m going to give it a go. The elimination reaction is a term used in organic chemistry that describes a type of reactions. The name kinda tells you what’s going to happen. Something is going to be removed/eliminated from initial reactant/substrate and as a result, an alkene (double bond containing compound) will form.

In elimination reactions a hydrogen atom is first removed (as a H+) from the beta carbon. As a result, the left behind electrons create a pi bond between the beta carbon and the neighboring alpha carbon. This promotes the electronegative atom, on the alpha carbon, to leaves the substrate taking both electrons from the shared sigma bond with the alpha carbon.
4 0
3 years ago
History of Aluminum​
solniwko [45]

Answer:

Aluminium was named after alum, which is called 'alumen' in Latin. This name was given by Humphry Davy, an English chemist, who, in 1808, discovered that aluminium could be produced by electrolytic reduction from alumina (aluminium oxide), but did not manage to prove the theory in practice.

Explanation:

5 0
4 years ago
Read 2 more answers
What is a product of science
ddd [48]

Answer:

A product in science is a substance that is formed when two or more chemicals react.

Explanation:

When a chemical reaction takes place, a new substance is often created from the atoms or molecules of the original substances. There are often multiple products formed in a reaction.

6 0
3 years ago
The saltwater is a homogeneous or a heterogeneous mixture
ddd [48]
Homogeneous because it is unable to be distinguished of the components Water and Salt
5 0
3 years ago
Which describe beta decay? Check all that apply 1.In beta decay, a proton becomes a neutron and a positron 2.In beta decay, a ne
ivanzaharov [21]

haha thanks again for the help.

3 0
3 years ago
Read 2 more answers
Other questions:
  • Which of the following can be measured in amps with an ammeter
    5·1 answer
  • What is the melting point of a 3L aqueous solution that contains 100g of MgCl2? kf H2O=1.86 rhoH2O=1gmL
    12·2 answers
  • I need help with this I’ve been trying a lot but I can’t understand these questions
    10·1 answer
  • Tidal power plants work best in small estuaries or intels that border the ocean. True or false?
    10·1 answer
  • The pH of a 0.65M solution of hydrofluoric acid HF is measured to be 1.68. Calculate the acid dissociation constant Ka of hydrof
    8·1 answer
  • A.) What is the mass in g of 5 mols of Mg?
    5·1 answer
  • Oxygen difluoride is a hazardous, highly explosive gas used as a propellant. A sample of this compound weighing 0.432 grams is a
    15·1 answer
  • When combined in the correct ratio, hydrogen and oxygen atoms can form water as show
    7·1 answer
  • M + e- ---> M-1 Is M an oxidizing or reducing agent?
    13·1 answer
  • 4Hg(OH)2+ H3PO4 —> Hg3(PO4)2 + 5H20
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!