The correct option is A.
Fluorescent lamps have many advantages over incandescent lamps and the options given in B, C and D are part of these advantages. The option given in A is a disadvantage and not an advantage. This is because, as a result of operating at an higher temperature, it will gives out and radiate more heat.
Hi there!

We know that:

U = Potential Energy (J)
K = Kinetic Energy (J)
E = Total Energy (J)
At 10m, the total amount of energy is equivalent to:
U + K = 50 + 50 = 100 J
To find the highest point the object can travel, K = 0 J and U is at a maximum of 100 J, so:
100J = mgh
We know at 10m U = 50J, so we can solve for mass. Let g = 10 m/s².
50J = 10(10)m
m = 1/2 kg
Now, solve for height given that E = 100 J:
100J = 1/2(10)h
100J = 5h
<u>h = 20 meters</u>
Given data:
- It is a graphical display where the data is grouped in to ranges
- A diagram consists rectangles, whose area is proportional to frequency of a variable and whose width is equal to the class interval.
- It is an accurate representation of the distribution of numerical data.
<em>From Figure:</em>
Each box in the graph (small rectangle box) is assumed to be one download. So, in the graph the time between 8 p.m to 9 p.m, the number of downloads are 8.75 approximately (because the last box is incomplete, therefore 8 complete boxes and 9th is more than half).
<em>So, We conclude that the total number of downloads are approximately 9 in the time span of 8 p.m. to 9 p.m.</em>
They are used to be able to go out of Earth and into space to Be able to explore and toBe able to prove and tell about Earth and space
Answer:
Speed of light
Explanation:
The famous Einstein's equation is:

where
E is the energy
m is the mass
is the speed of light
In this equation, Einstein summarized the following fact: mass can be converted into energy, and the amount of energy released in such a process is given by the equation.
An example of application of this equation is the nuclear fusion process. In a nuclear fusion, two lighter nuclei combine into a heavier nucleus. However, the mass of the heavier nucleus is slightly less than the sum of the masses of the two original nuclei: some of the mass of the original nuclei has been converted into energy, accorging to the previous equation.