They have free electron(s) on their outermost energy levels making them good conductors.
They have metallic bonds in their chemical structure.
They readily lose the electrons on their outermost energy levels, to bond with non-metals in ionic bonds to form chemical compounds called "salts"
Answer:
82.59 m/s or 297.324 km/h
Explanation:
From the question,
Applying
V = √[2(P'/ρ)].................. Equation 1 ( From
Where V = Speed of the aircraft, Differential Pressure of the air craft, ρ = Density of air at an altitude of 3000 m.
Given: P' = 3100 N/m², ρ = 0.909 kg/m³
Substitute into equation 1
V = √[2(3100/0.909)]
V = √(2×3410.34)
V = √(6820.68)
V = 82.59 m/s
V = 297.324 km/h
Hence the speed of the aircraft is 82.59 m/s or 297.324 km/h
Answer:
Precipitation Reactions
They contain two aqueous reactants, one aqueous product, and one solid product. In this reaction, two soluble products, Pb(NO3)2 and KI, combine to form one soluble product, KNO3, and one insoluble product, PbI2. This is a precipitation reaction, and PbI2 is the precipitate.
The question is incomplete, here is the complete question:
A chemist measures the amount of bromine liquid produced during an experiment. She finds that 766.g of bromine liquid is produced. Calculate the number of moles of bromine liquid produced. Round your answer to 3 significant digits.
<u>Answer:</u> The amount of liquid bromine produced is 4.79 moles.
<u>Explanation:</u>
To calculate the number of moles, we use the equation:

We are given:
Given mass of liquid bromine = 766. g
Molar mass of liquid bromine,
= 159.8 g/mol
Putting values in above equation, we get:

Hence, the amount of liquid bromine produced is 4.79 moles.
The reaction involved here would be written as:
2N2 + 3H2 = 2NH3
The equilibrium constant of a reaction is the ratio of the concentrations of the products and the reactants when in equilibrium. The expression for the equilibrium constant of this reaction would be as follows:
Kc = [NH3]^2 / [N2]^2[H2]^3
Kc = 0.40^2 / (0.20)^2 (0.10)^3
Kc = 4000