Because that's where they come from. Coal, oil, and natural gas are the products
of dead dinosaurs rotting in the ground under great pressure for millions of years.
Answer:
19.12 L
Explanation:
At STP(i.e. Standard temperature and pressure).
The volume occupied by one mole of gas = 22.4 L
The pressure = 1 atm
The temperature = 273 K
Thus, since 1 mole of gas = 22.4 L;
Then 0.853 moles of N2 gas will occupy:
= (0.853 moles of N2 gas × 22.4 L)/ 1 mole of N2 gas
= 19.12 L
Answer:
She can add 380 g of salt to 1 L of hot water (75 °C) and stir until all the salt dissolves. Then, she can carefully cool the solution to room temperature.
Explanation:
A supersaturated solution contains more salt than it can normally hold at a given temperature.
A saturated solution at 25 °C contains 360 g of salt per litre, and water at 70 °C can hold more salt.
Yasmin can dissolve 380 g of salt in 1 L of water at 70 °C. Then she can carefully cool the solution to 25 °C, and she will have a supersaturated solution.
B and D are wrong. The most salt that will dissolve at 25 °C is 360 g. She will have a saturated solution.
C is wrong. Only 356 g of salt will dissolve at 5 °C, so that's what Yasmin will have in her solution at 25 °C. She will have a dilute solution.
<u>Answer:</u> The final volume of the gas comes out to be 4 L.
<u>Explanation:</u>
To calculate the volume with changing pressure, we use the equation given by Boyle's law.
This law states that pressure is inversely proportional to the volume of the gas at constant temperature and number of moles.
Mathematically,
(At constant temperature and number of moles)
The equation given by this law is:

where,
are initial pressure and volume.
are final pressure and volume.
We are given:

Putting values in above equation, we get:

Hence, the final volume of the gas will be 4 L.
Answer:
The thermodynamic parameter which is of significance in this case is the 'Reduction Potential' for molecular bromine which is ~ +1.1 v vs N.H.E. In other words, it is a strong oxidizing agent. The bromine will oxidize sulfur compounds in which the valence of sulfur is lower than six to sulfate.
There are many possible reactions. Here is one possible example:
Na2 S2O3 + 4Br2 + 5 H2O = 2NaHSO4 + 8 HBr