<span>ideal gas law: PV = nRT so .....</span><span> V = PV/(RT) </span>
<span>
Initial number of moles of Cl, n = 0.943*5.11/(0.08206 × 286) mol = 0.2053 moles.
</span><span>
We know the molar mass of K (potassium) = 39.0 g/mol </span>
<span>sooo....
The Initial number of moles of K = 29.0 g/(39.0 g/mol) = 0.7436 moles</span>
<span>Find the balanced equation for the reaction : </span><span>2K + Cl2 → 2KCl </span>
<span>Mole ratio of K:Cl = 2:1 </span>
<span>So after the reaction, the amount of K needed = (0.2053 mol) × 2 = 0.4106 mol which is less than 0.7436 mol </span>
<span>
This means that K is in excess but Cl completely reacts. </span>
<span> So we know the mole ratio is Cl:KCl = 1 : 2
</span>
<span>Number of moles of Cl (completely) reacted = 0.2053 mol which means the n</span><span>umber of moles of KCl formed = (0.2053 mol) × 2 = 0.4106 mol </span>
<span>Molar mass of KCl = (39.0 + 35.5) g/mol = 74.5 g/mol </span>
<span>Mass of KCl formed = 0.4106 mol * 74.5 g/mol = 30.6 g</span>
Answer
Sounds travel slowest in gasses so it would be air
Answer:
John Dalton:
John Dalton was the scientist who introduced atomic theory in the field of chemistry. Dalton worked on different gases and formulated this theory. The main points of Dalton's theory are:
- Every element present is made up of atoms.
- Atoms of an elements are have the same same properties whereas these properties are different for each element.
- According to his theory, an atom could not be broken down.
- Different atoms combine or get separated from each other during a chemical reaction.
Ernest Rutherford:
Ernest Rutherford is known as the father of nuclear physics due to his impressing research work on radioactivity of atoms. Rutherford was the first scientist to discover the nucleus of an atom and prove that the nucleus was charged. He also described that the electrons circle around the nucleus of an atom.
I assume you’re looking for a balanced equation.
SiCl4 + 2H2O = SiO2 + 4HCl
Answer:
Percent yield = 89.1%
Explanation:
Based on the equation:
Cl₂ + 2KI → 2KCl + I₂
<em>1 mole of Cl₂ reacts with 2 moles of KI to produce to moles of KCl</em>
<em />
To solve this quesiton we must find the moles of each reactant in order to find the limiting reactant. With the limiting reactant we can find the moles of KCl and the mass:
<em>Moles Cl₂:</em>
8x10²⁵ molecules * (1mol / 6.022x10²³ molecules) = 133 moles
<em>Moles KI -Molar mass: 166.0028g/mol-</em>
25g * (1mol / 166.0028g) = 0.15 moles
Here, clarely, the KI is the limiting reactant
As 2 moles of KI produce 2 moles of KCl, the moles of KCl produced are 0.15 moles. The theoretical mass is:
0.15 moles * (74.5513g / mol) =
11.2g KCl
Percent yield is: Actual yield (10.0g) / Theoretical yield (11.2g) * 100
<h3>Percent yield = 89.1%</h3>