Answer:
6960 J/kg°C
Explanation:
specific heat= mass×specific heat capacity×increase in temperature
specific heat= 0.240×1450×20= 6960 J/kg°C
hope it helps!
<u>Answer:</u> The value of equilibrium constant for the given reaction is 56.61
<u>Explanation:</u>
We are given:
Initial moles of iodine gas = 0.100 moles
Initial moles of hydrogen gas = 0.100 moles
Volume of container = 1.00 L
Molarity of the solution is calculated by the equation:
Equilibrium concentration of iodine gas = 0.0210 M
The chemical equation for the reaction of iodine gas and hydrogen gas follows:
<u>Initial:</u> 0.1 0.1
<u>At eqllm:</u> 0.1-x 0.1-x 2x
Evaluating the value of 'x'
The expression of for above equation follows:
Putting values in above expression, we get:
Hence, the value of equilibrium constant for the given reaction is 56.61
I'm pretty sure all 4 are subatomic particles but if i had to guess i'd be Photons
Answer:There is no relationship between the viscosity and density of a fluid. While viscosity is the thickness or thinness of a fluid, density refers to the space between its particles. However, both properties are affected by temperature. When a fluid is heated, its particles move far apart, and it also becomes less viscous.