<span>When cooking frozen cheese ravioli, you should use three quarts of water instead of one so that the raviolis have room to move around in the boiling water and so that while they are moving around, they will not stick to each other or the pan.</span>
The first answer is -.595454 the second answer is -1.9488
Answer:
The electronic configuration that are incorrectly written is 1s²2s³2p⁶, 4s²3d¹⁰4p⁷, 3s¹ and 2s²2p⁴.
Explanation:
The electronic configuration of the elements corresponds to how all the electrons of an element are arranged in energy levels and sub-levels.
There are 7 energy levels —from 1 to 7— whose sublevels are described as s, p, d and f.
All electronic configurations begin with the term "1s" —corresponding to the sublevel s of level 1— so 4s²3d¹⁰4p⁷, 3s¹ and 2s²2p⁴ are incorrectly written. In addition, 4s²3d¹⁰4p⁷ is written incorrectly because is impossible to jump from the sublevel "s" to the sublevel "d" —which is found from level 3 and up— without passing through the sublevel "p".
In the case of 1s²2s³2p⁶, the wrong thing is that the sublevel "s" can only hold two electrons, not three.
The other options are correctly written.
Answer:
0.189 g.
Explanation:
- This problem is an application on <em>Henry's law.</em>
- Henry's law states that the solubility of a gas in a liquid is directly proportional to its partial pressure of the gas above the liquid.
- Solubility of the gas ∝ partial pressure
- If we have different solubility at different pressures, we can express Henry's law as:
<em>S₁/P₁ = S₂/P₂,</em>
S₁ = 0.0106/0.792 = 0.0134 g/L and P₁ = 0.321 atm
S₂ = ??? g/L and P₂ = 5.73 atm
- So, The solubility of the gas at 5.73 atm (S₂) = S₁.P₂/P₁ = (0.0134 g/L x 5.73 atm) / (0.321 atm) = 0.239 g/L.
<em>The quantity in (g) = S₂ x V = (0.239 g/L)(0.792 L) = 0.189 g.</em>
<em></em>