Answer:

Explanation:
As per mechanical energy conservation we can say that here since friction is present in the barrel so we will have
Work done by friction force = Loss in mechanical energy
so we will have

here we know that



Initial compression in the spring is given as



now from above equation




<span>The force would double.</span>
Ok i apologise for the messy working but I'll try and explain my attempt at logic
Also note i ignore any air resistance for this.
First i wrote the two equations I'd most likely need for this situation, the kinetic energy equation and the potential energy equation.
Because the energy right at the top of the swing motion is equal to the energy right in the "bottom" of the swing's motion (due to conservation of energy), i made the kinetic energy equal to the potential energy as indicated by Ek = Ep.
I also noted the "initial" and "final" height of the swing with hi and hf respectively.
So initially looking at this i thought, what the heck, there's no mass. Then i figured that using the conservation of energy law i could take the mass value from the Ek equation and use it in the Ep equation. So what i did was take the Ek equation and rearranged it for m as you can hopefully see. Then i substituted the rearranged Ek equation into the Ep equation.
So then the equation reads something like Ep = (rearranged Ek equation for m) × g (which is -9.81) × change in height (hf - hi).
Then i simplify the equation a little. When i multiply both sides by v^2 i can clearly see that there is one E on each side (at that stage i don't need to clarify which type of energy it is because Ek = Ep so they're just the same anyway). So i just canceled them out and square rooted both sides.
The answer i got was that the max velocity would be 4.85m/s 3sf, assuming no losses (eg energy lost to friction).
I do hope I'm right and i suppose it's better than a blank piece of paper good luck my dude xx
Answer:
The final angular speed is 16.1 rad/s
Explanation:
Given;
initial moment of inertia, I₁ = 2.56 kg.m²
final moment of inertia, I₂ = 0.40 kg.m²
initial angular speed, ω₁ = 0.4 rev/s = 2.514 rad/s
Apply the principle of conservation of angular momentum;
I₁ω₁ = I₂ω₂
where;
ω₂ is the final angular speed
ω₂ = (I₁ω₁) / (I₂)
ω₂ = (2.56 x 2.514) / (0.4)
ω₂ = 16.1 rad/s
Therefore, the final angular speed is 16.1 rad/s
Answer:
Shown from explanation.
Explanation:
The resonant frequency is related by the formula;
Fo= 1/2π√(K/M)
Where Fo is resonant frequency
M is mass
K is the spring constant
From the expression above;
When K is increased frequency would increases since frequency is directly proportional to spring constant.
Similarly when the mass is increased the frequency decreases since frequency is inversely proportional to the mass.
Amplitude is a property of a wave and so the frequency stays same.