Answer: vf = 51 m/s
d = 112 m
Explanation: Solution attached:
To find vf we use acceleration equation:
a = vf - vi / t
Derive to find vf
vf = at + vi
Substitute the values
vf = 3.5 m/s² ( 8.0 s) + 23 m/s
= 51 m/s
To solve for distance we use
d = (∆v)² / 2a
= (51 m/s - 23 m/s )² / 2 ( 3.5 m/s²)
= (28 m/s)² / 7 m/s²
= 784 m/s / 7 m/s²
= 112 m
This question involves the concepts of Wein's displacement law and characteristic wavelength.
The blackbody temperature will be "3.22 x 10⁵ k".
<h3>WEIN'S DISPLACEMENT LAW</h3>
According to Wein's displacement law,

where,
= characteristic wavelength = 9 μm = 9 x 10⁻⁹ m- T = temperature = ?
- c = Wein's displacment constant = 2.897 x 10⁻³ m.k
Therefore,

T = 3.22 x 10⁵ k
Learn more about characteristic wavelength here:
brainly.com/question/14650107
C. They don't have free electrons.
The only things capable of conducting a charge are things that have charged particles in them that are free to move, e.g free electrons, free positions, or dissociated ions
<span>A trade embargo on China would limit the imports or exports of goods. A trade embargo would create economic pressure on the Chinese government and influence the Chinese government's foreign or domestic policy. A trade embargo would encourage China to stop certain policies or actions in order to lift the embargo.</span>
When we apply brackes. It help car to stop