Answer:
Wavelength = 10 m
Explanation:
Given:
Speed = 100 m
Frequency = 10 Hz = 10 
To find : Wavelength = ?
We know that the relationship between wavelength λ, frequency f and speed v is given by the equation
v = fλ
Therefore wavelength λ = v/f
= 100 m
/ 10 m
= 10 m
Hence wavelength = 10 m
gamma radiation and heat flares from the sun, they use refelective gold sheets
Explanation:
Given that,
Object-to-image distance d= 71 cm
Image distance = 26 cm
We need to calculate the object distance


We need to calculate the focal length
Using formula of lens

put the value into the formula



The focal length of the lens is 35.52.
(B). Given that,
Object distance = 95 cm
Focal length = 29 cm
We need to calculate the distance of the image
Using formula of lens

Put the value in to the formula




We need to calculate the magnification
Using formula of magnification



The magnification is 0.233.
The image is virtual.
Hence, This is the required solution.
Answer:
Magnitude of the net force on q₁-
Fn₁=1403 N
Magnitude of the net force on q₂+
Fn₂= 810 N
Magnitude of the net force on q₃+
Fn₃= 810 N
Explanation:
Look at the attached graphic:
The charges of the same sign exert forces of repulsion and the charges of opposite sign exert forces of attraction.
Each of the charges experiences 2 forces and these forces are equal and we calculate them with Coulomb's law:
F= (k*q*q)/(d)²
F= (9*10⁹*3*10⁻⁶*3*10⁻⁶)(0.01)² =810N
Magnitude of the net force on q₁-
Fn₁x= 0
Fn₁y= 2*F*sin60 = 2*810*sin60° = 1403 N
Fn₁=1403 N
Magnitude of the net force on q₃+
Fn₃x= 810- 810 cos 60° = 405 N
Fn₃y= 810*sin 60° = 701.5 N

Fn₃ = 810 N
Magnitude of the net force on q₂+
Fn₂ = Fn₃ = 810 N