Answer:
because it's north
Explanation:
u if yyggggggggggggggg hgfth
Two light waves will interfere constructively if the path-length difference between them is a whole number.
<h3>
SUPERPOSITION</h3>
The principle of superposition state that, when two or more waves meet at a point, the resultant displacement at that point is equal to the sum of the displacements of the individual waves at that point.
Interference of waves can either be constructive, or destructive.
The two light waves, initially emitted in phase, will interfere constructively with maximum amplitude if the path-length difference between them is a whole number of wavelenght 1λ, 2λ, 3λ, 4λ etc
The equivalent phase differences between the waves will be 2
or 360 degrees, 4
or 720 degrees, 6
1080 degrees etc
Therefore, the two light waves, initially emitted in phase, will interfere constructively with maximum amplitude if the path-length difference between them is a whole number.
Learn more about Interference here: brainly.com/question/25310724
The answer to your question is,
A scientific law.
-Mabel <3
Answer:
The correct answer is Option A (decrease).
Explanation:
- According to Heisenberg's presumption of unpredictability, it's impossible to ascertain a quantum state viewpoint as well as momentum throughout tandem.
- Also, unless we have accurate estimations throughout the situation, we will have a decreased consistency throughout the velocity as well as vice versa though too.
Other given choices are not connected to the given query. Thus the above is the right answer.
155Ω
Explanation:
R = R ref ( 1 + ∝ ( T - Tref)
where R = conduction resistance at temperature T
R ref = conductor resistance at reference temperature
∝ = temperature coefficient of resistance for conductor
T = conduction temperature in degrees Celsius
T ref = reference temperature that ∝ is specified at for the conductor material
T = 600 k - 273 k = 327 °C
Tref = 300 - 273 K = 27 °C
R = 50 Ω ( 1 + 0.007 ( 327 - 27) )
R = 155Ω