Answer:
4.24m/s,45 degrees in forward direction
Explanation:
Explanation:
It is given that,
Inductance,
RMS value of voltage,
Frequency, f = 60 Hz
We need to find the energy stored at t = (1 /185) s. It is assumed that energy stored in the inductor is zero at t = 0. So,
The current flowing through the inductor is given by :

I = 0.091 A
Energy stored in the inductor is, 

U = 0.000165 Joules
Hence, this is the required solution.
We assign the variables: T as tension and x the angle of the string
The <span>centripetal acceleration is expressed as v²/r=4.87²/0.9 and (0.163x4.87²)/0.9 = </span><span>T+0.163gcosx, giving T=(0.163x4.87²)/0.9 – 0.163x9.8cosx.
</span>
<span>(1)At the bottom of the circle x=π and T=(0.163x4.87²)/0.9 – .163*9.8cosπ=5.893N. </span>
<span>(2)Here x=π/2 and T=(0.163x4.87²)/0.9 – 0.163x9.8cosπ/2=4.295N. </span>
<span>(3)Here x=0 and T=(0.163x4.87²)/0.9 – 0.163x9.8cos0=2.698N. </span>
<span>(4)We have T=(0.163v²)/0.9 – 0.163x9.8cosx.
</span><span>This minimum v is obtained when T=0 </span><span>and v verifies (0.163xv²)/0.9 – 0.163x9.8=0, resulting to v=2.970 m/s.</span>
Answer:
kinetic energy + potential energy