Answer:
c) cubic centimetre is it's answer..
Hooke's Law says that F=-kx where k is the spring constant measured in N/m (newtons per meter)
The wavelength of the note is

. Since the speed of the wave is the speed of sound,

, the frequency of the note is

Then, we know that the frequency of a vibrating string is related to the tension T of the string and its length L by

where

is the linear mass density of our string.
Using the value of the tension, T=160 N, and the frequency we just found, we can calculate the length of the string, L:
Answer:
The deformation is 0.088289 m
The final height of the monument is 170-0.088289 = 169.911702 m
Explanation:
Thermal coefficient of marble varies between (5.5 - 14.1) ×10⁻⁶/K = α
So, let us take the average value
(5.5+14.1)/2 = 9.8×10⁻⁶ /K
Change in temperature = 35-(-18) = 53 K = ΔT
Original length = 170 m = L
Linear thermal expansion

The deformation is 0.088289 m
The final height of the monument is 170-0.088289 = 169.911702 m (subtraction because of cooling)
Answer ) Sound level equation
The intensity of a sound wave is related to its amplitude squared by the following relationship: I=(Δp)22ρvw I = ( Δ p ) 2 2 ρ v w . Here Δp is the pressure variation or pressure amplitude (half the difference between the maximum and minimum pressure in the sound wave) in units of pascals (Pa) or N/m2.