Answer:
Sulfur
Explanation:
Sulfur has 16 valence electrons, as shown in the diagram.
I think it's 11.56 minutes
Answer:
The solution is always homogeneous mixture and transparent through which the light can travel. The mixture of water and sugar is a solution because sugar is soluble in water and form homogeneous mixture while the sand can not dissolve in water and sand particles scatter the light.
Explanation:
Solution:
"The solution is always homogeneous mixture and transparent through which the light can travel"
The mixture of water and sugar is a solution because sugar is soluble in water and form homogeneous mixture. The solubility of sugar is high as compared to the sand in water because the negative and positive ends of sucrose easily dissolve into the polar solvent i.e, water
Suspension:
"Suspension is the heterogeneous mixture, in which the solute particles settle down but does not dissolve"
The mixture of water and sand is suspension. The sand can not dissolve in water because it is mostly consist of quartz. The nonpolar covalent bonds of sand are too strong and cannot be break by water molecules.
Answer:
solubility of X in water at 17.0
is 0.11 g/mL.
Explanation:
Yes, the solubility of X in water at 17.0
can be calculated using the information given.
Let's assume solubility of X in water at 17.0
is y g/mL
The geochemist ultimately got 3.96 g of crystals of X after evaporating the diluted solution made by diluting the 36.0 mL of stock solution.
So, solubility of X in 1 mL of water = y g
Hence, solubility of X in 36.0 mL of water = 36y g
So, 36y = 3.96
or, y =
= 0.11
Hence solubility of X in water at 17.0
is 0.11 g/mL.
Answer:44.04mL
Explanation:Parameters given
V1 = 30.0mL
P1 = 36.7psi
P2 = 25.0psi
V2 = ??
From Boyle's gas law, which states that "the pressure of a given mass of an ideal gas is inversely proportional to its volume at a constant temperature"
This means that,
the pressure of a gas tends to increase as the volume of the container decreases, and also the pressure of a gas tends to decrease as the volume of the container increases.
Mathematically, Boyle's can be represented as shown below
P= k/V
Where P = Pressure, V = Volume and k is constant
Therefore,
PV = k
P1V1 = P2V2 =PnVn
Using the formula
P1V1 = P2V2
V2 = P1V1/P2
V2 = (36.7psi × 30.0mL) / 25.0psi
V2 = 1101.0/25.0
V2 = 44.04mL