1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
elena-s [515]
2 years ago
8

5/6 When switched on, the grinding machine accelerates from rest to its operating speed of 3450 rev/min in 6 seconds. When switc

hed off, it coasts to rest in 32 seconds. Determine the number of revolutions turned during both the startup and shutdown periods. Also determine the number of revolutions turned during the first half of each period. Assume uniform angular acceleration in both cases.
Physics
1 answer:
ludmilkaskok [199]2 years ago
7 0

Answer:

Δθ₁ =  172.5 rev

Δθ₁h =  43.1 rev

Δθ₂ =   920 rev

Δθ₂h = 690 rev

Explanation:

  • Assuming uniform angular acceleration, we can use the following kinematic equation in order to find the total angle rotated during the acceleration process, from rest to its operating speed:

       \Delta \theta = \frac{1}{2} *\alpha *(\Delta t)^{2}  (1)  

  • Now, we need first to find the value of  the angular acceleration, that we can get from the following expression:

       \omega_{f1}  = \omega_{o} + \alpha * \Delta t  (2)

  • Since the machine starts from rest, ω₀ = 0.
  • We know the value of ωf₁ (the operating speed) in rev/min.
  • Due to the time is expressed in seconds, it is suitable to convert rev/min to rev/sec, as follows:

       3450 \frac{rev}{min} * \frac{1 min}{60s} = 57.5 rev/sec (3)

  • Replacing by the givens in (2):

       57.5 rev/sec = 0 + \alpha * 6 s  (4)

  • Solving for α:

       \alpha = \frac{\omega_{f1}}{\Delta t} = \frac{57.5 rev/sec}{6 sec} = 9.6 rev/sec2 (5)

  • Replacing (5) and Δt in (1), we get:

       \Delta \theta_{1} = \frac{1}{2} *\alpha *(\Delta t)^{2} = \frac{1}{2} * 6.9 rev/sec2* 36 sec2 = 172.5 rev  (6)

  • in order to get the number of revolutions during the first half of this period, we need just to replace Δt in (6) by Δt/2, as follows:

       \Delta \theta_{1h} = \frac{1}{2} *\alpha *(\Delta t/2)^{2} = \frac{1}{2} * 6.9 rev/sec2* 9 sec2 = 43.2 rev  (7)

  • In order to get the number of revolutions rotated during the deceleration period, assuming constant deceleration, we can use the following kinematic equation:

       \Delta \theta = \omega_{o} * \Delta t + \frac{1}{2} *\alpha *(\Delta t)^{2}  (8)

  • First of all, we need to find the value of the angular acceleration during the second period.
  • We can use again (2) replacing by the givens:
  • ωf =0 (the machine finally comes to an stop)
  • ω₀ = ωf₁ = 57.5 rev/sec
  • Δt = 32 s

       0 = 57.5 rev/sec + \alpha * 32 s  (9)

  • Solving for α in (9), we get:

       \alpha_{2}  =- \frac{\omega_{f1}}{\Delta t} = \frac{-57.5 rev/sec}{32 sec} = -1.8 rev/sec2 (10)

  • Now, we can replace the values of ω₀, Δt and α₂ in (8), as follows:

        \Delta \theta_{2}  = (57.5 rev/sec*32) s -\frac{1}{2} * 1.8 rev/sec2\alpha *(32s)^{2} = 920 rev (11)

  • In order to get finally the number of revolutions rotated during the first half of the second period, we need just to replace 32 s by 16 s, as follows:
  • \Delta \theta_{2h}  = (57.5 rev/sec*16 s) -\frac{1}{2} * 1.8 rev/sec2\alpha *(16s)^{2} = 690 rev (12)
You might be interested in
35 POINTSS!!! PLSSSS HELLPPP!!!
Crazy boy [7]

Answer:

T

beacuse:

Energy can be transferred from one object to another by doing work. ... When work is done, energy is transferred from the agent to the object, which results in a change in the object's motion (more specifically, a change in the object's kinetic energy).

6 0
3 years ago
What type of eclipse is shown? How do you know?
Sonja [21]
That is a lunar eclipse. At night, when the Earth is between the Sun and the moon, the moon would appear to be red. Just for future reference, a solar eclipse is when the Moon is between the Sun and Earth. Speaking of which, check out the solar eclipse this August!

8 0
3 years ago
Read 2 more answers
How many coulombs of charge do 50 * 10^31 electrons possess
Angelina_Jolie [31]
Quantity of Charge , Q = ne
Where n = number of electrons
             e = charge on one electron = -1.6 * 10 ^-19  C.
             n = 50 * 10^31  electrons

Q =    (50 * 10^31)*( -1.6 * 10 ^-19 ) =  -8 * 10^13 C.

Note that the minus sign indicates that the charge is a negative charge.
7 0
3 years ago
(a) Calculate the magnitude of the gravitational force exerted by Mars on a 80 kg human standing on the surface of Mars. (The ma
andrew11 [14]

Answer:

a) F=1.044\times 10^9\ N

b)F'=1.044\times 10^9\ N

c) F_p=1.0672\times10^{-7}\ N

d) Treat the humans as though they were points or uniform-density spheres.

Explanation:

Given:

  • mass of Mars, M=6.4\times 10^{23}\ kg
  • radius of the Mars, r=3.4\times 10^{6}\ m
  • mass of human, m=80\ kg

a)

Gravitation force exerted by the Mars on the human body:

F=G.\frac{M.m}{r^2}

where:

G=6.67 \times 10^{-11}\ m^3.kg^{-1}.s^{-2} = gravitational constant

F=6.67\times10^{-11}\times \frac{6.4\times 10^{23}\times 80}{(3.4\times 10^{6})^2}

F=1.044\times 10^9\ N

b)

The magnitude of the gravitational force exerted by the human on Mars is equal to the force by the Mars on human.

F'=F

F'=1.044\times 10^9\ N

c)

When a similar person of the same mass is standing at a distance of 4 meters:

F_p=6.67\times10^{-11}\times \frac{80\times 80}{4}

F_p=1.0672\times10^{-7}\ N

d)

The gravitational constant is a universal value and it remains constant in the Universe and does not depends on the size of the mass.

  • Yes, we have to treat Mars as spherically symmetric so that its center of mass is at its geometric center.
  • Yes, we also have to ignore the effect of sun, but as asked in the question we have to calculate the gravitational force only due to one body on another specific body which does not brings sun into picture of the consideration.
4 0
3 years ago
Which of the following describes resistance?
enot [183]

D is your answer hope this helps

8 0
3 years ago
Other questions:
  • A bag of sugar has a mass of 2.2kg what is its weight on earth
    6·2 answers
  • What should happen to the demand for speed (measured by the average speed on highways) once airbags are included on cars?
    5·1 answer
  • Look at the densities of the jovian planets given in figure 1. which of the following statements best describes the pattern of j
    6·2 answers
  • How to do this question
    6·1 answer
  • A d'Arsonal meter with an internal resistance of 1 kohm requires 10 mA to produce full-scale deflection. Calculate thew value of
    12·1 answer
  • The work done in lifting a brick of mass 2kg through a height of 5m above the ground will be
    8·1 answer
  • Can someone help me please
    7·1 answer
  • What is the net force on a water bottle?
    11·2 answers
  • Which statement is best supported by the information in the chart? Wave X and Wave Y are mechanical waves, and Wave Z is an elec
    9·1 answer
  • Explain why the water that is used to cool the reactor vessel of a nuclear power plant is kept separate from the water that is h
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!