This is the equation for elastic potential energy, where U is potential energy, x is the displacement of the end of the spring, and k is the spring constant.
<span> U = (1/2)kx^2
</span><span> U = (1/2)(5.3)(3.62-2.60)^2
</span> U = <span>
<span>2.75706 </span></span>J
<span>Active Galactic Nuclei.</span>
3. Sand has a low specific heat compared to air
3 is the answer to your question
Answer:
the number density of the protons in the beam is 3.2 × 10¹³ m⁻³
Explanation:
Given that;
diameter D = 2.0 mm
current I = 1.0 mA
K.E of each proton is 20 MeV
the number density of the protons in the beam = ?
Now, we make use of the relation between current and drift velocity
I = MeAv ⇒ 1 / eAv
The kinetic energy of protons is given by;
K = 
v²
v = √( 2K /
)
lets relate the cross-sectional area A of the beam to its diameter D;
A =
πD²
now, we substitute for v and A
n = I /
πeD² ×√( 2K /
)
n = 4I/π eD² × √(
/ 2K )
so we plug in our values;
n = ((4×1.0 mA)/(π(1.602×10⁻¹⁹C)(2mm)²) × √(1.673×10⁻²⁷kg / 2×( 20 MeV)(1.602×10⁻¹⁹ J/ev )
n = 1.98695 × 10¹⁸ × 1.6157967 × 10⁻⁵
n = 3.2 × 10¹³ m⁻³
Therefore, the number density of the protons in the beam is 3.2 × 10¹³ m⁻³