Answer:
1.The Sun is located at one of the foci of the planets' elliptical orbits.
2.The path of the planets around the Sun is elliptical in shape.
Explanation:
As per Kepler's law of planet motion we know that all planets revolve around the sun in elliptical path in such a way that position of Sun must be at one of the focii of the path
So all planets are in elliptical path always
Position of sun is always at one of the focus
so correct answer will be
1.The Sun is located at one of the foci of the planets' elliptical orbits.
2.The path of the planets around the Sun is elliptical in shape.
Answer:
this statement describes meteor's velocity,
because velocity is a vector quantity which has both magnitude as well as a specific direction and here the meteor's direction is specified in the statement hence we conclude that this statement describes meteor's velocity as well as speed too.
<span>As a car drives with its tires rolling freely without any slippage, the type of friction acting between the tires and the road is kinetic friction.
We exert force to move the object from rest and in this case, static friction works. But, when the object comes in motion, then kinetic friction works. Here, since the car is driving without slipping means, kinetic friction acts on it. Its also called sliding or dynamic friction.</span>
The angular velocity of the wheel at the bottom of the incline is 4.429 rad/sec
The angular velocity (ω) of an object is the rate at which the object's angle position is changing in relation to time.
For a wheel attached to an incline angle, the angular velocity can be computed by considering the conservation of energy theorem.
As such the total kinetic energy (K.E) and rotational kinetic energy (R.K.E) at a point is equal to the total potential energy (P.E) at the other point.
i.e.
P.E = K.E + R.K.E







Therefore, we can conclude that the angular velocity of the wheel at the bottom of the incline is 4.429 rad/sec
Learn more about angular velocity here:
brainly.com/question/1452612