Velocity of an object is its rate of change of the object's position per interval of time. Velocity is a vector quantity which means that it consists of a magnitude and a direction. Magnitude is represented by the speed and the direction is represented by the angle. To determine the velocity components, we use trigonometric functions to determine the angle of the components. For the north component we, use the sine function while, for the west component, we use the cosine function. We calculate as follows:
north velocity component = (16.8 m/s) (sin 54°) = 16.4 m/s
<span>west velocity component = (16.8 m/s) (cos 54°) = 3.49 m/s</span>
1 nanowatt = 1 nanojoule/sec
1 watt = 1 joule/sec
10 watts = 10 joules/sec
100 watts = 100 joules/sec
742.914 watts = 742.914 joules/sec
1,000 watts = 1,000 joules/sec
10,000 watts = 10,000 joules/sec
100,000 watts = 100,000 joules/sec
1 megawatt = 1 megajoule/sec
1 gigawatt = 1 gigajoule/sec
1 petawatt = 1 petajoule/sec
We don't care what frequency the transmission is using,
or who their morning DJ is.
#1.
<em>Car </em>1<em> weighs </em>300 kilograms<em> and is moving right at </em>3 meters per second (m/s)
#2.
Law of conservation of momentum
momentum before collorion = momentim after collosion
MV + mv = MV' + mv'
1500x25+ 1000x5
37500 + 15000
Answer:how long it took you to get there and the distance between your house and her house
Explanation:
Answer: 78 metres
Explanation:
The average velocity of the bus refers to the rate of change of its distanced travelled in the westward direction per unit time.
Thus, Velocity V = Distance travelled (D)/ time taken (T)
Then, average velocity = 52 metres per hour (mph)
Time taken = 1.5 hour
To get the distance travelled (D), make it the subject formula
D = V x T
D = velocity x time taken
D = 52 mph x 1.5 hour
D = 78 metres
Thus, the bus traveled a distance of 78 metres between the two cities.