Answer:

Explanation:
We are given that
Mass of one asteroid 1,
Mass of asteroid 2,
Initial distance between their centers,d=13.63 R
Radius of each asteroid=R
d'=R+R=2R
Initial velocity of both asteroids

We have to find the speed of second asteroid just before they collide.
According to law of conservation of momentum




According to law of conservation of energy







Hence, the speed of second asteroid =
Answer:
Seven
Explanation:
The rules for significant digits are:
- Non-zero digits are always significant.
- Zeros between significant digits are also significant.
- Trailing zeros are significant only after a decimal point.
Here, the 2, 4, 9, and 2 are significant because they are non-zero digits.
The first two 0s are significant because they are between significant digits.
The last 0 is significant because it is a trailing zero after a decimal point.
Therefore, all seven digits are significant.
Answer:
a) n = 9.9 b) E₁₀ = 19.25 eV
Explanation:
Solving the Scrodinger equation for the electronegative box we get
Eₙ = (h² / 8m L²2) n²
where l is the distance L = 1.40 nm = 1.40 10⁻⁹ m and n the quantum number
In this case En = 19 eV let us reduce to the SI system
En = 19 eV (1.6 10⁻¹⁹ J / 1 eV) = 30.4 10⁻¹⁹ J
n = √ (In 8 m L² / h²)
let's calculate
n = √ (8 9.1 10⁻³¹ (1.4 10⁻⁹)² 30.4 10⁻¹⁹ / (6.63 10⁻³⁴)²
n = √ (98) n = 9.9
since n must be an integer, we approximate them to 10
b) We substitute for the calculation of energy
In = (h² / 8mL2² n²
In = (6.63 10⁻³⁴) 2 / (8 9.1 10⁻³¹ (1.4 10⁻⁹)² 10²
E₁₀ = 3.08 10⁻¹⁸ J
we reduce eV
E₁₀ = 3.08 10⁻¹⁸ j (1ev / 1.6 10⁻¹⁹J)
E₁₀ = 1.925 101 eV
E₁₀ = 19.25 eV
the result with significant figures is
E₁₀ = 19.25 eV
Answer:
<em> The distance required = 16.97 cm</em>
Explanation:
Hook's Law
From Hook's law, the potential energy stored in a stretched spring
E = 1/2ke² ......................... Equation 1
making e the subject of the equation,
e = √(2E/k)........................ Equation 2
Where E = potential Energy of the stretched spring, k = elastic constant of the spring, e = extension.
Given: k = 450 N/m, e = 12 cm = 0.12 m.
E = 1/2(450)(0.12)²
E = 225(0.12)²
E = 3.24 J.
When the potential energy is doubled,
I.e E = 2×3.24
E = 6.48 J.
Substituting into equation 2,
e = √(2×6.48/450)
e = √0.0288
e = 0.1697 m
<em>e = 16.97 cm</em>
<em>Thus the distance required = 16.97 cm</em>
The answer to your question is C.