I'm not sure what your question is. But, the half life is the amount of time required for half the material to decay. For U238 this is 4.5 billion years, whilst for Fr-223 (Francium) its about 22 minutes. To calculate the time for something to decay you need to use the equation:
Mass (after time t) = Mass (initial) * (0.5)^(time/half life)
Hope this helps
Answer:
<h2>Magnitude of the second charge is

</h2>
Explanation:
According to columbs law;
F = 
F is the attractive or repulsive force between the charges = 12N
q1 and q2 are the charges
let q1 = - 8.0 x 10^-6 C
q2=?
r is the distance between the charges = 0.050m
k is the coulumbs constant =9*10⁹ kg⋅m³⋅s⁻⁴⋅A⁻²
On substituting the given values
12 = 9*10⁹*( - 8.0 x 10^-6)q2/0.050²
Cross multiplying

Answer : Noble Gases do not readily form compounds because they are chemically stable with 8 valence electrons.
Explanation :
Noble gases are the chemical elements that are present in group 18 in the periodic table.
The elements are helium, neon, argon, krypton, xenon and radon.
They are chemically most stable except helium due to having the maximum number of 8 valence electrons can hold their outermost shell that means they have a complete octet.
They are rarely reacts with other elements to form compounds by gaining or losing electrons since they are already chemically stable.
Hence, the noble Gases do not readily form compounds because they are chemically stable with 8 valence electrons.
<span>16.82 x 0.04 = 0.67 rad
I hope I helped if you really need I can explain to you how I got that answer but Thats correct im sorry it took 2 days for me to find this answer but if you or anybody else still needs the answer for this question here it is :) have a fantastic day guys Spring Break is coming up soon :)</span>
Answer:
Changes in the object's momentum (answer D)
Explanation:
A net force will cause an object to change its velocity, and that will affect the object's momentum, which is defined by the product of the object's mass times its velocity.
So, select the last option (D) in the given list.