1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elenna [48]
3 years ago
11

A student in gym class swings from a rope and they are moving 5 m/s at the bottom of their swing. What is the height they reach

above the floor before swinging back down?
1/2v^2=gh g = 9.8 m/s^2
A 2.55 m
B. 1.28 m
c. 5m
D. 12.5 m​
Physics
1 answer:
vaieri [72.5K]3 years ago
4 0

Answer:

A

Explanation:

You might be interested in
Explain each stage of communication process​
zaharov [31]

Explanation:

hope this would be the right answer ..

3 0
3 years ago
Scientists studying an anomalous magnetic field find that it is inducing a circular electric field in a plane perpendicular to t
yarga [219]

Answer

The rate at which the magnetic field is changing is  [\frac{dB}{dt} ] =  0.000467 T/s

Explanation

From the question we are told that

   The electric field strength is E =  3.5mV/m =  3.5 *10^{-3} \ V/m

    The radius is  r =  1.5 \ m

The rate of change of the  magnetic  field  is mathematically represented as

        \frac{d \phi }{dt}  =  \int\limits^{} {E \cdot dl}

Where dl is change of a unit length

     \frac{d \phi}{dt}  =  A *  \frac{dB}{dt}

Where A is the area which is mathematically represented as

     A = \pi r^2

    So

    E \int\limits^{} {  dl} =  ( \pi r^2) (\frac{dB}{dt} )  

  E L  =  ( \pi r^2) (\frac{dB}{dt} )  

where L is the circumference of the circle which is mathematically represented as

     L = 2 \pi r

So

     E (2 \pi r ) =  (\pi r^2 ) [\frac{dB}{dt} ]

      E  =   \frac{r}{2}  [\frac{dB}{dt} ]

       [\frac{dB}{dt} ] = \frac{E}{ \frac{r}{2} }

substituting values

      [\frac{dB}{dt} ] = \frac{3.5 *10^{-3}}{ \frac{15}{2} }

      [\frac{dB}{dt} ] =  0.000467 T/s    

8 0
3 years ago
Four pairs of objects have the masses as described below, along with the distances between
lord [1]

Answer:

<h2>Mass of 1 Kg and 2 Kg, 1 meters apart.</h2>

Explanation:

The gravitational force is defined as

F=G\frac{m_{1} m_{2} }{r^{2} }

By definition, the gravitational force depends directly on the product of the masses and indirectly on the distance between the masses, which means the further they are, the less gravitational force would be. And, the greater the masses, the greater the gravitational force.

Among the options, the pair that would have the greatest gravitational force is  Mass of 1 Kg and 2 Kg, with 1 meter between them.

Notice that the last choice includes the same masses but with a greater distance between them, that means it would be a weaker graviational force.

Therefore, the right answer is the second choice.

7 0
3 years ago
A capacitor is charged until its stored energy is 7.54 J. A second capacitor is then connected to it in parallel. If the charge
Ivan

Answer:

2 J

Explanation:

A charged capacitor of capacitance C_1 with energy of 7.54 J, is connected in parallel with another capacitor C_2 , so the charge is equally distributed between them.

(a) The energy stored in the capacitor before it being connected to the other capacitor is:

U_O=q_0^2/2C_1=7.54 J\\

The energy stored in the electric field is the sum of the energies of the two capacitors:

U=U_1+U_2\\U=q_1^2/2C_1+q_2^2/2C_2

since the charge equally distributed,  q_1 = q_2 = q_o/2. and since they are connected in parallel the potential difference on both of them is the same :

V_1=V_2\\q_1/C_1=q_2/C_2\\q_0/C_1=q_0/C_2\\C_1=C_2=C_3\\

hence,

U=q_0^2/8C+q_0^2/8C\\U=q_0^2/4C\\U=2J

8 0
3 years ago
If a current is two amps and the resistance is 3 ohms, how much voltage was needed?
Hunter-Best [27]

Answer:

6 V

Explanation:

We can solve the problem by using Ohm's law:

V=RI

where

V is the voltage in the circuit

R is the resistance

I is the current

In this problem, we know the current, I=2 A, and the resistance, R=3 \Omega, therefore we can find the voltage in the circuit:

V=RI=(3 \Omega )(2 A)=6 V

7 0
3 years ago
Other questions:
  • At room temperature, good conductors of heat usually feel cool to the touch. This is because they conduct heat so quickly that w
    7·1 answer
  • What are the rarefaction and compression regions of a guitar string
    11·1 answer
  • How to describe the motion of an object that has an acceleration of 0 m/s
    11·1 answer
  • An 1,840 W toaster, a 1,460 W electric frying pan, and a 50 W lamp are plugged into the same outlet in a 15 A, 120 V circuit. (T
    7·2 answers
  • In this experiment, you will use a track and a toy car to explore the concept of movement. You will measure the time it takes th
    6·2 answers
  • Why doesn’t a rocket in space need to use its engine to keep it moving??? Please help!
    13·2 answers
  • . A blowing ball with a 12 cm radius has an initial angular velocity of 5.0 rad/s. Sometime later, after rotating through 5.5 ra
    11·1 answer
  • 5) Sally has a mass of 50 kg. She ran with a velocity of 20 m/s.
    9·1 answer
  • A 300 g wooden block on a smooth, level surface is firmly attached to a very light horizontal spring with a spring constant of 2
    5·1 answer
  • draw the process and control scheme for this system if a constraint controller is used, such that when the smaller of two parall
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!