Answer:
length of the ladder is 13.47 feet
base of wall to latter distance 6.10 feet
angle between ladder and the wall is 26.95°
Explanation:
given data
height h = 12 feet
angle 63°
to find out
length of the ladder ( L) and length of wall to ladder ( A) and angle between ladder and the wall
solution
we consider here angle between base of wall and floor is right angle
we apply here trigonometry rule that is
sin63 = h/L
put here value
L = 12 / sin63
L = 13.47
so length of the ladder is 13.47 feet
and
we can say
tan 63 = h / A
put here value
A = 12 / tan63
A = 6.10
so base of wall to latter distance 6.10 feet
and
we say here
tanθ = 6.10 / 12
θ = 26.95°
so angle between ladder and the wall is 26.95°
Answer:
option (d)
Explanation:
The relation between the rms velocity and the molecular mass is given by
v proportional to \frac{1}{\sqrt{M}} keeping the temperature constant
So for two gases




Σf = m a
Σf = m v^2 / r
Σf = 52 8^2 / 1.6
Σf = 2080 N
The time of motion of the 5 kg object will be the same as 1 kg since both objects are dropped from the same height.
The given parameters;
<em>Mass of the first object, m1 = 1 kg</em>
<em>Mass of the second object, m2 = 5 kg</em>
The final velocity of the objects during the downward motion is calculated as follows;

The time of motion of the object from the given height is calculated as;

The time of motion of each object is independent of mass of the object.
Thus, the time of motion of the 5 kg object will be the same as 1 kg since both objects are dropped from the same height.
Learn more about time of motion here: brainly.com/question/2364404
The relationship between mass and acceleration is an inverse proportionality
Explanation:
The relationship between the acceleration of an object and its mass is given by Newton's second law, which states that:

where
F is the net force on the object
m is its mass
a is its acceleration
From the equation, we notice that if the force on the object is kept constant, then the mass and the acceleration are inversely proportional to each other. This means that:
- If the mass of the object is increased, its acceleration will decrease
- If the mass of the object is decreased, its acceleration will increase
Learn more about Newton's second law:
brainly.com/question/3820012
#LearnwithBrainly