Answer:
E = 1580594.95 N/C
Explanation:
To find the electric field inside the the non-conducting shell for r=11.2cm you use the Gauss' law:
(1)
dS: differential of the Gaussian surface
Qin: charge inside the Gaussian surface
εo: dielectric permittivity of vacuum = 8.85 × 10-12 C2/N ∙ m2
The electric field is parallel to the dS vector. In this case you have the surface of a sphere, thus you have:
(2)
Qin is calculate by using the charge density:
(3)
Vin is the volume of the spherical shell enclosed by the surface. a is the inner radius.
The charge density is given by:

Next, you use the results of (3), (2) and (1):

Finally, you replace the values of all parameters, and for r = 11.2cm = 0.112m you obtain:

hence, the electric field is 1580594.95 N/C
Answer:
False
Explanation:
The second you let go its gonna release kinetic energy that's why it's potential
Answer:
μ =tanθ
Explanation:=
The ratio of the force of static friction and the normal reaction is equal to tanθ. F=mgsinθ. R = mgcosθ.
μ=tanθ
Both valves are closed during the power stroke.
While the fuel is burning in the cylinder, you want
all the force of the expanding gases to push the
piston down ... you don't want any of the gases
or their pressure escaping.
If either of the valves was open, even just a crack,
then part of the gases would go blooey out the valve,
and some pressure would be lost that's supposed to be
pushing the piston.
Answer:

Explanation:
q = Charge of proton = 
r = Radius of circle = 
v = Velocity of proton = 
Magnetic moment is given by

The magnetic moment associated with this motion is 