I am pretty sure that the statement which is true is A. a molecule having a covalent bond can be ionic. I choose this option because you usually ca see how electons of polyatomic ions are being covalenr and gain or loose ionic electrons in order to accomplish the octet.<span>
</span>Do hope you find it helpful! Regards.
Hello!
1.00 L of a gas at STP is compressed to 473 mL. What is the new pressure of gas?
- <u><em>We have the following data:</em></u>
Vo (initial volume) = 1.00 L
V (final volume) = 473 mL → 0.473 L
Po (initial pressure) = 1 atm (pressure exerted by the atmosphere - in STP)
P (final pressure) = ? (in atm)
- <u><em>We have an isothermal transformation, that is, its temperature remains constant, if the volume of the gas in the container decreases, so its pressure increases. Applying the data to the equation Boyle-Mariotte, we have:</em></u>






<u><em>Answer: </em></u>
<u><em>The new pressure of the gas is 2.11 atm </em></u>
___________________________________

Answer:
emf generated by cell is 2.32 V
Explanation:
Oxidation: 
Reduction: 
---------------------------------------------------------------------------------
Overall: 
Nernst equation for this cell reaction at
-
![E_{cell}=E_{cell}^{0}-\frac{0.059}{n}log{[Al^{3+}]^{2}[I^{-}]^{6}}](https://tex.z-dn.net/?f=E_%7Bcell%7D%3DE_%7Bcell%7D%5E%7B0%7D-%5Cfrac%7B0.059%7D%7Bn%7Dlog%7B%5BAl%5E%7B3%2B%7D%5D%5E%7B2%7D%5BI%5E%7B-%7D%5D%5E%7B6%7D%7D)
where n is number of electrons exchanged during cell reaction,
is standard cell emf ,
is cell emf ,
is concentration of
and
is concentration of 
Plug in all the given values in the above equation -
![E_{cell}=2.20-\frac{0.059}{6}log[(4.5\times 10^{-3})^{2}\times (0.15)^{6}]V](https://tex.z-dn.net/?f=E_%7Bcell%7D%3D2.20-%5Cfrac%7B0.059%7D%7B6%7Dlog%5B%284.5%5Ctimes%2010%5E%7B-3%7D%29%5E%7B2%7D%5Ctimes%20%280.15%29%5E%7B6%7D%5DV)
So, 
Answer:
Hailey the answer is D.
Explanation:
if liquid to solid is exothermic then then the other way around would be endorhermic