<u>Answer:</u> The amount of heat required to warm given amount of water is 470.9 kJ
<u>Explanation:</u>
To calculate the mass of water, we use the equation:

Density of water = 1 g/mL
Volume of water = 1.50 L = 1500 mL (Conversion factor: 1 L = 1000 mL)
Putting values in above equation, we get:

To calculate the heat absorbed by the water, we use the equation:

where,
q = heat absorbed
m = mass of water = 1500 g
c = heat capacity of water = 4.186 J/g°C
= change in temperature = 
Putting values in above equation, we get:

Hence, the amount of heat required to warm given amount of water is 470.9 kJ
<span>Consider two solutions: solution X has a pH of 4; solution Y has a pH of 7. From this information, we can reasonably conclude that </span>the concentration of hydrogen ions (H⁺) or hydronium ions (H₃O⁺) in solution X is thousand times as great as the concentration of hydrogen ions or hydronium ions in solution Y.
Solution X: c(H⁺) = 10∧-pH = 10⁻⁴ mol/L = 0,0001 mol/L.
Solution Y: c(H⁺) = 10⁻⁷ mol/L = 0,0000001 mol/L.
0,0001 mol/L / 0,0000001 mol/L = 1000.
Answer:
synthesis
Explanation:
I believe answer is d a synthesis reaction
Fire scenes<span> are different than regular crime </span>scenes<span> because the </span>evidence<span> that was at the.</span>Evidence from a fire scene<span> is </span>collected<span> by being placed in an air-</span><span>airtight.Plastic bags </span>should be avoided<span> because they can produce dangerous gases</span>
<span>(4) zinc.................</span>