Answer: 
Explanation:
According to the law of conservation of mass, mass can neither be created nor be destroyed. Thus the mass of products has to be equal to the mass of reactants. The number of atoms of each element has to be same on reactant and product side. Thus chemical equations are balanced.
The balanced equation will be:

First, draw the 2-hexene. Th is is a molecule of six carbons with a double bond in the second carbon:
CH3 - CH = CH2 - CH2 - CH2 - CH3
Secong, put one Br on the second carbon and one Br on the third carbon:
CH3 - CBr = CBr - CH2 - CH2 - CH3
Third, cis means that the two Br are placed in opposed positions, this is drawn with one Br up and the other down. So, you need to represent the position of the Br in the space:
H Br H H H
| | | | |
H - C - C = C - C - C - C - H
| | | | |
H Br H H H
The important fact to realize is that the two Br are in opposed sides of the molecule.
Pure water has a freezing point of 0 degrees centigrade but seawater has a lower freezing point because of the salt (NaCl)
Answer :
The time taken by the reaction is 19.2 seconds.
The order of reaction is, second order reaction.
Explanation :
The general formula to determine the unit of rate constant is:

Unit of rate constant Order of reaction
0
1
2
As the unit of rate constant is
. So, the order of reaction is second order.
The expression used for second order kinetics is:
![kt=\frac{1}{[A_t]}-\frac{1}{[A_o]}](https://tex.z-dn.net/?f=kt%3D%5Cfrac%7B1%7D%7B%5BA_t%5D%7D-%5Cfrac%7B1%7D%7B%5BA_o%5D%7D)
where,
k = rate constant = 
t = time = ?
= final concentration = 0.97 M
= initial concentration = 2.48 M
Now put all the given values in the above expression, we get:


Therefore, the time taken by the reaction is 19.2 seconds.
Answer:
in this the correct answer is option 2.