they have zero momentum before pushing off, is at least true
Atomic mass can change through the process of fusion. Another way is, it can also change in nuclear fusion.
Answer:
Explanation:
To get the person Moving you have to overcome the static (means not moving) friction coefficient. U(static)
To get the person going at the same speed you have to overcome the kinetic friction coefficient. U(Kinetic)
Force to get him moving is 198 N. Force = ma = U(static)Mg
combining the 2 equations you get 198N = U(static)* 55kg *9.8m/s^2 Solve for U(static)
Same equation to keep him moving except with the dynamic force and the dynamic U
175N= U(kinetic)*55kg*9.8m/s^2 Solve (U dynamic)
Answer:
It becomes a giant or supergiant.
Explanation:
Once all the hydrogen supply is gone, fusion of hydrogen into helium stops. The core starts to contract and liberates energy, which heats the superior layer until it becomes hot enough to start the fusion of hydrogen into helium.
Complete Question
A 100-W (watt) light bulb has resistance R=143Ω (ohms) when attached to household current, where voltage varies as V=V0sin(2πft), where V0=110 V, f=60 Hz. The power supplied to the bulb is P=V2R J/s (joules per second) and the total energy expended over a time period [0,T] (in seconds) is 
Compute U if the bulb remains on for 5h
Answer:
The value is 
Explanation:
From the question we are told that
The power rating of the bulb is
The resistance is 
The voltage is ![V = V_o sin [2 \pi ft]](https://tex.z-dn.net/?f=V%20%20%3D%20%20V_o%20%20sin%20%5B2%20%5Cpi%20ft%5D)
The energy expanded is 
The voltage 
The frequency is 
The time considered is 
Generally power is mathematically represented as

=> ![P = \frac{( 110 sin [2 \pi * 60t])^2}{ 144}](https://tex.z-dn.net/?f=P%20%3D%20%20%5Cfrac%7B%28%20110%20%20sin%20%5B2%20%5Cpi%20%2A%2060t%5D%29%5E2%7D%7B%20144%7D)
=> ![P = \frac{ 110^2 [ sin [120 \pi t])^2}{ 144}](https://tex.z-dn.net/?f=P%20%3D%20%20%5Cfrac%7B%20110%5E2%20%5B%20sin%20%5B120%20%5Cpi%20t%5D%29%5E2%7D%7B%20144%7D)
So
![U = \int\limits^T_0 { \frac{ 110^2* [sin [120 \pi t])^2}{ 144}} \, dt](https://tex.z-dn.net/?f=U%20%20%3D%20%20%5Cint%5Climits%5ET_0%20%7B%20%5Cfrac%7B%20110%5E2%2A%20%20%5Bsin%20%5B120%20%5Cpi%20t%5D%29%5E2%7D%7B%20144%7D%7D%20%5C%2C%20dt)
=> ![U = \frac{110^2}{144} \int\limits^T_0 { ( sin^2 [120 \pi t]} \, dt](https://tex.z-dn.net/?f=U%20%20%3D%20%20%5Cfrac%7B110%5E2%7D%7B144%7D%20%5Cint%5Climits%5ET_0%20%7B%20%28%20%20%20sin%5E2%20%5B120%20%5Cpi%20t%5D%7D%20%5C%2C%20dt)
=> 
=> 
=> ![U = \frac{110^2}{144} [\frac{t}{2} - [\frac{1}{2} * \frac{sin(240 \pi t)}{240 \pi} ] ]\left | T} \atop {0}} \right.](https://tex.z-dn.net/?f=U%20%3D%20%20%5Cfrac%7B110%5E2%7D%7B144%7D%20%5B%5Cfrac%7Bt%7D%7B2%7D%20%20-%20%5B%5Cfrac%7B1%7D%7B2%7D%20%2A%20%20%5Cfrac%7Bsin%28240%20%5Cpi%20t%29%7D%7B240%20%5Cpi%7D%20%5D%20%5D%5Cleft%20%20%7C%20T%7D%20%5Catop%20%7B0%7D%7D%20%5Cright.)
=> ![U = \frac{110^2}{144} [\frac{t}{2} - [\frac{1}{2} * \frac{sin(240 \pi t)}{240 \pi} ] ]\left | 18000} \atop {0}} \right.](https://tex.z-dn.net/?f=U%20%3D%20%20%5Cfrac%7B110%5E2%7D%7B144%7D%20%5B%5Cfrac%7Bt%7D%7B2%7D%20%20-%20%5B%5Cfrac%7B1%7D%7B2%7D%20%2A%20%20%5Cfrac%7Bsin%28240%20%5Cpi%20t%29%7D%7B240%20%5Cpi%7D%20%5D%20%5D%5Cleft%20%20%7C%2018000%7D%20%5Catop%20%7B0%7D%7D%20%5Cright.)
![U = \frac{110^2}{144} [\frac{18000}{2} - [\frac{1}{2} * \frac{sin(240 \pi (18000))}{240 \pi} ] ]](https://tex.z-dn.net/?f=U%20%3D%20%20%5Cfrac%7B110%5E2%7D%7B144%7D%20%5B%5Cfrac%7B18000%7D%7B2%7D%20%20-%20%5B%5Cfrac%7B1%7D%7B2%7D%20%2A%20%20%5Cfrac%7Bsin%28240%20%5Cpi%20%2818000%29%29%7D%7B240%20%5Cpi%7D%20%5D%20%5D)
=> 