Radiation: Getting sunburnt on a beach.
- The sun’s radiation (no direct contact) is what causes the skin to burn.
Radiation: Microwave cooking food
- Microwaves use radiation to heat the food inside of it; between radio waves and infrared radiation on the electromagnetic spectrum
Conduction: Touching a hot car seat in the summer
- Conduction is the transfer of heat by direct contact (hand to seat).
Conduction: Burning yourself with a curling iron (Similar to above; direct contact).
Convection: An ocean breeze
- Convection near coastlines cause the transfer of energy; water warms and cools slower than land.
Conduction: Sliding down a hot metal slide in august
- You are in direct contact with the slide, which is hot due to the temperature.
Convection: Water in a boiling pot of macaroni
- The water, a liquid, is being heated by molecular motion.
Convection: Currents deep within the earth that cause tectonic plates to move
- Convection currents drive the movement of tectonic plates in the mantle, which is fluid/molten. The currents circulate under the asthenosphere.
The focal point of a concave mirror is halfway along the radius, therefore the radius would be 2•16= 32 cm
Answer:
Mechanical Advantage = Output Force/Input Force
Velocity Ratio = Driving Gear/Driven Gear
Explanation:
Answer:
k = 6,547 N / m
Explanation:
This laboratory experiment is a simple harmonic motion experiment, where the angular velocity of the oscillation is
w = √ (k / m)
angular velocity and rel period are related
w = 2π / T
substitution
T = 2π √(m / K)
in Experimental measurements give us the following data
m (g) A (cm) t (s) T (s)
100 6.5 7.8 0.78
150 5.5 9.8 0.98
200 6.0 10.9 1.09
250 3.5 12.4 1.24
we look for the period that is the time it takes to give a series of oscillations, the results are in the last column
T = t / 10
To find the spring constant we linearize the equation
T² = (4π²/K) m
therefore we see that if we make a graph of T² against the mass, we obtain a line, whose slope is
m ’= 4π² / k
where m’ is the slope
k = 4π² / m'
the equation of the line of the attached graph is
T² = 0.00603 m + 0.0183
therefore the slope
m ’= 0.00603 s²/g
we calculate
k = 4 π² / 0.00603
k = 6547 g / s²
we reduce the mass to the SI system
k = 6547 g / s² (1kg / 1000 g)
k = 6,547 kg / s² =
k = 6,547 N / m
let's reduce the uniqueness
[N / m] = [(kg m / s²) m] = [kg / s²]