0.34 moles of gas would be contained in a 11.2 L container that is at a pressure of 0.75 atm and 300 K.
<h3>HOW TO CALCULATE NUMBER OF MOLES?</h3>
The number of moles of a substance can be calculated using the following expression:
PV = nRT
Where;
- p = pressure (atm)
- v = volume (L)
- n = number of moles
- R = gas law constant
- T = temperature
0.75 × 11.2 = n × 0.0821 × 300
8.4 = 24.63n
n = 8.4 ÷ 24.63
n = 0.34 moles
Therefore, 0.34 moles of gas would be contained in a 11.2 L container that is at a pressure of 0.75 atm and 300 K.
Learn more about number of moles at: brainly.com/question/1190311
Answer:
See explanation
Explanation:
The third element in the first transition series is Vanadium
The fourth element in the first transition series is chromium
Given that we have four d orbitals in universe L instead of five as we have on earth;
The electronic configuration of Vanadium in universe L is;
Ar 3d3 4s2
The electronic configuration of chromium in universe L is;
[Ar] 3d4 4s2
Explanation:
This process ensures that the pressure inside of the graduated cylinder is the same as the atmospheric pressure in the room.
Suppose the level of water inside and outside the cylinder is same, pressure stays the same. Therefore, total pressure of the is made equal to atmospheric pressure by adjusting the height of cylinder. it is done till the water level is equal.
D. The particles are tightly packed together