Answer:
A
Explanation:
Protons and neutrons make up nearly all the mass of an atom, and each is worth 1 amu. Each atom of an element has a mass measured in amu; thus, its weighted average, or atomic mass, is measured in amu.
Electrons are way way way....lighter so protons and neutrons are taken into account when doing atomic mass.
The quantum numbers for the last valence electron in nickel are (3, 2, 0, -½).
The electron configuration of nickel is [Ar]4s²3d⁸
The last electron added is a 3d electron, so <em>n</em> = 3 and <em>l</em> = 2.
We construct a table of quantum numbers.
<u>Element </u><em><u>n</u></em><u> </u><em><u>l</u></em><u> </u><em><u>m</u></em><u>ₗ mₛ </u>
Sc 3 2 2 +½
Ti 3 2 1 +½
V 3 2 0 +½
Cr 3 2 -1 +½
Mn 3 2 -2 +½
Fe 3 2 2 -½
Co 3 2 1 -½
Ni 3 2 0 -½
The quantum numbers for the last electron in nickel are (3, 2, 0, -½).
A wedge is plane that is inclined on it's side. I hope this helps.
Answer:
2.82 g
Explanation:
Step 1: Write the balanced precipitation reaction
3 Ba(NO₃)₂ (aq) + Al₂(SO₄)₃ (aq) ⇒ 3 BaSO₄(s) + 2 Al(NO₃)₃(aq)
Step 2: Calculate the reacting moles of Ba(NO₃)₂
45.0 mL (0.0450 L) of 0.548 M Ba(NO₃)₂ react.
0.0450 L × 0.548 mol/L = 0.0247 mol
Step 3: Calculate the moles of Al₂(SO₄)₃ that react with 0.0247 moles of Ba(NO₃)₂
The molar ratio of Ba(NO₃)₂ to Al₂(SO₄)₃ is 3:1. The reacting moles of Al₂(SO₄)₃ are 1/3 × 0.0247 mol = 8.23 × 10⁻³ mol
Step 4: Calculate the mass corresponding to 8.23 × 10⁻³ moles of Al₂(SO₄)₃
The molar mass of Al₂(SO₄)₃ is 342.2 g/mol.
8.23 × 10⁻³ mol × 342.2 g/mol = 2.82 g
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.
<span> I got (a). The answer was 7.53. But when I try to solve (d), I keep getting the wrong answer. I subtracted the moles of NaOH from the acid and added the moles to the base. Then I did Ka = (x*([NaClO]+x))/([HClO - x) and then I found the pH</span>