Answer:
v = 2591.83 m/s
Explanation:
Given that,
The electric field is 1.27 kV/m and the magnetic field is 0.49 T. We need to find the electron's speed if the fields are perpendicular to each other. The magnetic force is balanced by the electric force such that,

So, the speed of the electron is 2591.83 m/s.
Answer:
66.053m/s
Explanation:
A = 47
B = 347
C = 19
Train moves at
(23 + A)m/s
= 23 + 47 = 60m/s
At (250.0+B) seconds
250.0+347 =
547 seconds
Distance d,
= 70 x 597
= 41790
It also moves at
(45.0 + c)
= 45 + 19
= 64m/s
Time = 800 + B
= 800 + 347
= 1147
Distance,
= 64 x 1147
= 73408m
Total distance,
= 73408 + 41790
= 115,198
Total time,
= 597 + 1147
= 1744
Average speed,
= Total distance / total time
= 115198/1174
= 66.053m/s
Answer:
Explanation:
We Often solve the the integral neutron transport equation using the collision probability (CP) method which usually requires flat flux (FF) approach. In this research, it has been carried out in the cylindrical nuclear fuel cell with the spatial of mesh with quadratic flux approach. This simply means that the neutron flux at any region of the nuclear fuel cell is forced to follow the pattern of a quadratic function.
Furthermore The mechanism may be referred to as the process of non-flat flux (NFF) approach. The parameters that calculated in this study are the k-eff and the distribution of neutron flux. The result shows that all parameters are in accordance with the result of SRAC.
The Answer is A, the iris dilates the pupil.
Answer:
The average velocity is 180 km/hr
Explanation:
Given;
initial velocity, u = 60 km per hour
final velocity, v = 120 km per hour
initial time = 1 hour
final time = 2 hour
Initial position = 60 km/h x 1 hour = 60 km
final position = 120 km/h x 2 hour = 240 km
The average velocity is given by;

Therefore, the average velocity is 180 km/hr