Answer:
Diameter He = 0,1 nm.
Explanation:
Km to nm:
⇒ Diameter He = 1.0 E-13 Km * ( 1000 m / Km ) * ( 1 E9 nm / m )
⇒ Diameter He = 0.1 nm
4.1 h = 14760 s
<span>t 1/2 = ln 2 / k </span>
<span>k = rate reaction = 4.97 x 10^-5 </span>
<span>ln 0.045 / 0.36 = - 4.97 x 10^-5 t </span>
<span>2.08 = 4.97 x 10^-5 t </span>
<span>t = 41839.9 s = 11 h 37 min 19 s</span>
Answer:
salt bridge balances the charge when electrons move from one half cell to another half cell.
Explanation:
Explanation: A salt bridge balances the charge when electrons move from one half cell to another half cell. During this process the salt bridge uses its electrolyte solution which further helps in balancing charges in both the half cells. ... Therefore, for each electrochemical cell a new salt bridge is used.
When pcl5 solidifies it forms pcl4 cations and pcl6–anions. according to valence bond theory, hybrid orbitals that are used by phosphorus in the pcl4 cations are one orbital of s and three orbital of p as it is sp³hydridised.
<h3>What is sp³ hybridization?</h3>
Hybridization is a process or system which specifies the shape and geometry of any element or molecule with bond angles too.
The pcl4 cation is sp³ hybridized because of the phosphorus behave as a central atom here and the 4 chloride molecules are attached with the p- orbitals to the phosphorus molecule.
Therefore, pcl4 cation is sp³ hybridized.
Learn more about sp³ hybridization, here :
brainly.com/question/13062274
#SPJ4
Answer:
The most acidic solution had a pH of 3.27.
Explanation:
In order to solve this problem we need to keep in mind that the lower the pH of a solution is, the more acidic the solution is.
If among the pH readings across the measured breakfast drinks, the lowest one was 3.27 (as the problem tells us with the range), then that drink was the most acidic one.
Conversely, the least acidic one had a pH of 3.88.