B. As particles travel in straight lines, their paths sometimes meet, and then they bounce apart with no gain or loss of energy.
Explanation:
The best statement that describes the collision of gas particles according to the kinetic-molecular theory is that as particles travel in straight lines, their paths sometimes meet and then they bounce apart with no gain or loss of energy.
- The kinetic molecular theory is used to explain the forces between molecules and their energy.
One of the postulate suggests that, when molecules collide with each other, or with the wall of the container, there is no loss or gain of energy.
- Molecules are independent of one another and that forces of attraction and repulsion between molecules are negligible.
Learn more:
Particle collision brainly.com/question/6439920
#learnwithBrainly
Answer:
D. all of the above.
Explanation:
The kinetic-molecular theory of gases suggests that; the particles of a gas move independently of each other, the particles in a gas move rapidly, the particles in a gas are far apart.
Hope it helps.
If they are in the same row they have the same number of outer electrons on the same main shell also known as valence electrons
if they are in the same column they have the same number of valence electrons but on different main shells
Answer:
N2H4 + 2H2O2 ---->N2 + 4H2O
Explanation:
N=2 N=2
H=6 ->8 H=2 ->8
O=2 -> 4 O=1 -> 4
Add coefficients to hydrogen peroxide on the left and water on the right, so that there is an equal number of hydrogens and oxygens.
The nuclear reaction occurring is known as alpha-decay, and during this process, an alpha particle is released from a heavy radioactive nucleus to form a lighter more stable nucleus. The alpha particle is equivalent to a helium nucleus, which means it contains 2 protons and two neutrons (net charge of +2)
The decay equation is:
Rn → Po + α