1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
V125BC [204]
2 years ago
6

What happens to the light that strikes the Black Paint

Physics
2 answers:
SSSSS [86.1K]2 years ago
8 0

Answer:

It absorbs all the wavelengths of visual light that fall on it and no light is reflected into the eye from that object.

Hope this helps

Marysya12 [62]2 years ago
8 0
The object absorbs some amount of light and reflects back the rest.
You might be interested in
A boy pulls his 9.0 kg sled, applying a horizontal force of 14.0 N (rightward). The coefficient of friction between the snow and
Mama L [17]

Here is the answer, dud

5 0
3 years ago
A stone is catapulted at time t = 0, with an initial velocity of magnitude 19.9 m/s and at an angle of 39.9° above the horizonta
larisa [96]

Answer:

Part a)

x = 15.76 m

Part b)

y = 7.94 m

Part c)

x = 26.16 m

Part d)

y = 7.49 m

Part e)

x = 83.23 m

Part f)

y = -75.6 m

Explanation:

As we know that catapult is projected with speed 19.9 m/s

so here we have

v_x = 19.9 cos39.9

v_x = 15.3 m/s

similarly we have

v_y = 19.9 sin39.9

v_y = 12.76 m/s

Part a)

Horizontal displacement in 1.03 s

x = v_x t

x = (15.3)(1.03)

x = 15.76 m

Part b)

Vertical direction we have

y = v_y t - \frac{1]{2}gt^2

y = (12.76)(1.03) - 4.9(1.03)^2

y = 7.94 m

Part c)

Horizontal displacement in 1.71 s

x = v_x t

x = (15.3)(1.71)

x = 26.16 m

Part d)

Vertical direction we have

y = v_y t - \frac{1]{2}gt^2

y = (12.76)(1.71) - 4.9(1.71)^2

y = 7.49 m

Part e)

Horizontal displacement in 5.44 s

x = v_x t

x = (15.3)(5.44)

x = 83.23 m

Part f)

Vertical direction we have

y = v_y t - \frac{1]{2}gt^2

y = (12.76)(5.44) - 4.9(5.44)^2

y = -75.6 m

6 0
2 years ago
Derive the formula for the moment of inertia of a uniform, flat, rectangular plate of dimensions l and w, about an axis through
Ad libitum [116K]

Answer:

A uniform thin rod with an axis through the center

Consider a uniform (density and shape) thin rod of mass M and length L as shown in (Figure). We want a thin rod so that we can assume the cross-sectional area of the rod is small and the rod can be thought of as a string of masses along a one-dimensional straight line. In this example, the axis of rotation is perpendicular to the rod and passes through the midpoint for simplicity. Our task is to calculate the moment of inertia about this axis. We orient the axes so that the z-axis is the axis of rotation and the x-axis passes through the length of the rod, as shown in the figure. This is a convenient choice because we can then integrate along the x-axis.

We define dm to be a small element of mass making up the rod. The moment of inertia integral is an integral over the mass distribution. However, we know how to integrate over space, not over mass. We therefore need to find a way to relate mass to spatial variables. We do this using the linear mass density of the object, which is the mass per unit length. Since the mass density of this object is uniform, we can write

λ = m/l (orm) = λl

If we take the differential of each side of this equation, we find

d m = d ( λ l ) = λ ( d l )

since  

λ

is constant. We chose to orient the rod along the x-axis for convenience—this is where that choice becomes very helpful. Note that a piece of the rod dl lies completely along the x-axis and has a length dx; in fact,  

d l = d x

in this situation. We can therefore write  

d m = λ ( d x )

, giving us an integration variable that we know how to deal with. The distance of each piece of mass dm from the axis is given by the variable x, as shown in the figure. Putting this all together, we obtain

I=∫r2dm=∫x2dm=∫x2λdx.

The last step is to be careful about our limits of integration. The rod extends from x=−L/2x=−L/2 to x=L/2x=L/2, since the axis is in the middle of the rod at x=0x=0. This gives us

I=L/2∫−L/2x2λdx=λx33|L/2−L/2=λ(13)[(L2)3−(−L2)3]=λ(13)L38(2)=ML(13)L38(2)=112ML2.

4 0
2 years ago
Air is warmer and less dense than surrounding air at the equator because the equator receives more?
Hatshy [7]
The answer is C: Solar energy
4 0
3 years ago
Read 2 more answers
A ball is thrown upward with a speed of 40 m/s. Approximately how much time does it take the ball to travel from the release loc
zvonat [6]

I'm going to assume that this gripping drama takes place on planet Earth, where the acceleration of gravity is 9.8 m/s².  The solutions would be completely different if the same scenario were to play out in other places.

A ball is thrown upward with a speed of 40 m/s.  Gravity decreases its upward speed (increases its downward speed) by 9.8 m/s every second.

So, the ball reaches its highest point after (40 m/s)/(9.8 m/s²) = <em>4.08 seconds</em>. At that point, it runs out of upward gas, and begins falling.

Just like so many other aspects of life, the downward fall is an exact "mirror image" of the upward trip.  After another 4.08 seconds, the ball has returned to the height of the hand which flung it.  In total, the ball is in the air for <em>8.16 seconds</em> up and down.

4 0
3 years ago
Other questions:
  • Which sentence describes Newton's first law?
    13·1 answer
  • The parking brake on a 1000 kg Cadillac has failed, and it is rolling slowly, at 1 mph , toward a group of small children. Seein
    9·1 answer
  • A thermometer is placed in water in order to measure the water’s temperature. What would cause the liquid in the thermometer to
    12·2 answers
  • If an atom has seven electrons how many are in the second shell?
    15·2 answers
  • If a shot is put an angle of 41 degrees relative to the horizontal with a velocity of 36 ft/s in the direction of the put, what
    9·1 answer
  • explain how the efficiency of an ideal meachine compares with the efficiency of a real machine. For 25 POINTS
    11·2 answers
  • Which Law is connected with inertia?
    14·2 answers
  • Every day, every hour, every second one of the most important events in life is going on in your body—cells are dividing. When c
    10·1 answer
  • Samples of different materials, A and B, have the same mass, but the sample
    10·2 answers
  • What does electrical energy transform into when used by objects in a home?
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!